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Summary

In this thesis, we consider the problem of optimizing the experimentation workflow of a
typical network researcher. Specifically, we first identify the need for new experimenta-
tion tools which deal with the lack of realism of network simulations in general and which
improve the lack of reproducibility, as well as the poor analysis and deployment facilities
found in testbeds and field experiments. We then focus on the design and implementa-
tion of two new tools to close this gap between simulations on one side and testbed/field
experiments on the other side.

First, we integrate within the ns-3 core facilities transparent support for real-time
simulation capabilities to allow arbitrary simulation models to be interconnected with the
real world and then we build upon this groundwork to create Nepi, an experimentation
tool which can automate the deployment of mixed experiments comprising simulations and
testbed virtual machines.

Second, we extend the ns-3 network simulator with a new Direct Code Execution mod-
ule which is capable of executing within the simulator existing user space as well as kernel
space protocol implementations and we demonstrate that the resulting system is both ex-
tremely robust and one order of magnitude more efficient CPU and memory wise than
previous alternatives.

These two new tools radically extend the scope of the network experiments that can
be conducted with off-the-shelf hardware by allowing the use of the same protocol imple-
mentations in both simulation and testbed environments, hence paving the way to more
realistic simulations, more controllable testbeds, and simplifying the switch between one
and the other.

Keywords: discrete time event-driven simulation, emulation, real-time simulation,
direct code execution, network experimentation
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Résumé

Dans cette thèse, nous nous intéressons a l’amélioration du flot de travail d’expérimentation
d’un chercheur en réseaux. Pour ce faire, nous mettons en évidence la nécessite d’augmenter
le réalisme des simulations réseaux ainsi que de diminuer les difficultés de déploiement et
d’analyse des tests sur le terrain ou en environement plus controlé.

Nous avons ainsi commencé par intégrer au sein du coeur du simulateur ns-3 le support
transparent pour des simulations temps réel afin d’inter-connecter l’ensemble de ses modèles
avec le monde réel. Puis, nous nous sommes appuyés sur cette fonctionalite fondamentale
pour déveloper Network Experimentation Programming Interface (Nepi), un nouvel outil
d’expérimentation capable d’automatiser le déploiement d’expériences mixtes comprenant
à la fois des éléments simulés en temps réel et des éléments du monde réel. Enfin, nous avons
mis au point un nouveau module ns-3 capable d’exécuter directement au sein du simulateur
des implémentations existantes de protocoles réseaux venant à la fois d’applications de
niveau utilisateur et de la pile réseau du noyau d’un système d’exploitation. Nous avons
démontré que notre approche est extrèmement robuste et un ordre de grandeur plus efficace
que les solutions existantes du point de vue de l’utilisation Central Processing Unit (CPU)
et mémoire.

C’est l’utilisation simultanée de ces deux nouveaux outils qui permet l’utilisation de la
même implémentation d’un protocole réseau à la fois en simulation et en tests sur le terrain.
Elle représente donc l’étape indispensable vers des simulations réseaux plus réalistes, des
tests plus facilement contrôlables et un passage aisé de l’un à l’autre.

Mots clés: simulation évènementielle à temps discret, émulation, simulation temps-
réel, expérimentation réseau
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2 CHAPTER 1. INTRODUCTION

Although users have always found the means to interact remotely with computers since
they existed, it was the creation of the ARPANET in 1969 that really started the phenom-
enal growth of computer networks we still witness today. Since then, many generations of
computer and network technologies have been designed, used, and retired but many more
are still in use: this explosion in heterogeneity and complexity is what gave way to the
rise of the Internet Protocol (IP), the protocol family of choice to enable inter-networking
between mobile smart phones, computing clusters, large mainframes, and inter-planetary
spatial probes.

Despite IP’s success as the major inter-networking layer, the inter-operability between
hardware and software devices deployed on existing and future networks is still the major
challenge that must be dealt with on a daily basis by every protocol designer, network
operator, and network user.

For a long time, network researchers had relatively few tools to help them in this task:
the size and the cost of the computer and networking hardware was so high that it made it
impractical for anyone but a privileged few to experiment with new protocols before they
could be deployed. Simple analytical models and simple simulations that focused on the
steady-state equilibrium of a network were the tools of choice to study the impact of a
proposed modification on a protocol. This changed drastically by the end of the 1990s and
the early 2000 years when the cost of common off the shelf hardware plummeted making it
possible to build cheap powerful experimentation platforms such as [7] to investigate both
the steady-state of a system and more complex intermittent cross-layer phenomena.

Nowadays, after a decade of hardware cost decreases, it is not only possible to build
testbed platforms cheaply but it has become feasible to use small-scale deployments in the
field to get even closer to the complexity of the real world. Furthermore, simulation tools
have also started to catch up in terms of realism, hence increasing even further the number
of options available to researchers for conducting their experiments.

1.1 Experimentation tools

To illustrate the conundrum now facing these researchers, we consider the example of a
content distribution protocol running over Transmission Control Protocol (TCP)/IP within
a wireless ad hoc network whose task is to ensure that every wireless device in that network
gets a copy of a large binary file initially available only in one of these devices. In this
case, the objective might be to minimize the total time needed to fully distribute the file or
maybe to ensure that no device depletes its battery. The objective could also be a complex
combination of these objectives together with a few extra others such as making it possible
to perform voice calls over this network while the file is being distributed. Whatever the
objective chosen, the problems remain the same:

• the behavior of each protocol layer present in each device is going to influence the
behavior of all other layers in ways that are hard to predict precisely. For example, if
TCP starts to send data too fast, it will clog the shared wireless spectrum, hence in-
creasing the probability of transmission collisions and thus decreasing the probability
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of successful packet transmissions which will in turn mean that TCP must retransmit
each lost packet and thus further increase contention for access to the shared wireless
medium, etc.

• some elements of the system are inherently unpredictable and variable (say, the
surrounding wireless interference level) yet they must be estimated since they might
dramatically change the behavior of the system being studied.

1.1.1 Field Experiments

Given the number and the complexity of the factors involved in this example, most re-
searchers would immediately turn to a field experiment to study the behavior of the sys-
tem.

Those with an engineering background would probably start by implementing a simple
content distribution protocol and then collect traces about its behavior within a small-scale
network made of less than twenty nodes that can be assembled cheaply with off-the-shelf
laptops. Then, they might try to observe, analyze, and identify the various cross-layer
interactions at play here to revise their content distribution protocol and maybe change
slightly the behavior or the parameters of their TCP stack.

Others might instead try to first characterize the wireless background interference level
and its impact on packet loss, then move on to model packet transmission interference as
a function of the average medium usage level and finally, implement a content distribution
protocol that makes use of these models to optimize the target metrics.

While one or even both approaches might be successful at finding a practical solution
to the problem at hand, they will also necessarily highlight the considerable hidden cost
involved in having to deal with the lack of control and reproducibility of such a field
experiment. For example, making sure that the poor performance of a specific version of the
content distribution protocol is due solely to that protocol rather than a transient change
in the background interference level during that experiment because an undergraduate
student used a microwave oven will require a lot of analysis work so that statistically
relevant results can be extracted out of the noise.

1.1.2 Testbeds

The complexity of controlling all relevant parameters in a field test is precisely why so
many users often turn to setting up testbeds where they can measure or control every
parameter of interest and easily reproduce the same experiment over and over again.

In the case we consider here, some researchers will try to build a testbed where wireless
interferences are tightly controlled. A Faraday cage would be sufficient to isolate their
wireless nodes from the outside world while controlling the interference level between each
node in their testbed would require removing the wireless antennas and replacing them
with cables fed to a set of signal mixers and splitters. If our experimenters are also willing
to perform field experiments to observe typical background interference conditions and
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generate similar background noise in their testbed, the resulting testbed might become the
source of both reproducible and realistic results.

In the end, though, when our researchers turn to the fine interaction between some of
the higher layers of the protocol stack and the Medium Access Control (MAC) wireless
layer, they might realize how difficult it is to debug and extract meaningful information
from protocols implemented in real hardware or within a live Operating System kernel and
they might finally see the value of running a simplified experiment within a simulator to
be able to observe and trace the state of the entire protocol stack.

1.1.3 Simulations

In the context of this wireless experiment, different layers of the protocol stack will require
different simulation techniques. The analog parts of the system (the transmission and
reception antennas and the propagation medium of the radio signal between them) could
be simulated by solving a set of differential equations using a Finite Element Method
[2]. On the other hand, the digital components that make up our experiment, that is,
the entire protocol stack from the application to the MAC layer is a system whose state
changes discontinuously at discrete time points making it a natural candidate for discrete
time event-driven simulations.

Discrete time event-driven simulations

The objective of a discrete time simulation is to compute the values of each state variable
of our system within the simulated time frame. Two major techniques are used to do
so: time-stepped simulations [3] and event-driven execution runtimes [1]. Time-stepped
simulations divide the total simulation time into a series of equal-sized time steps and then
incrementally increase the simulation time by this time step value. At each time step,
the simulation runtime computes the new values of each state variable. This approach is
very simple to implement and can offer great performance when there is at least one state
variable that changes its value at each step. However, it is little used because it is hard to
come up with a time step value that is sufficiently small to minimize the rounding error of
and event’s expiration time to the time of the closest previous step and that is big enough
to ensure that there is at least one state variable change within each time step.

In practice, discrete simulations are more often implemented by event-driven execution
runtimes [1]: rather than compute the new value of each state variable at each time step,
the runtime instead computes the new values only when something meaningful happens
in the system being modeled. Each interesting event in the real system is modeled by a
simulation event to which we associate a timestamp and a state update function. The
simulation runtime then proceeds to execute the state update function of each event in
the order of increasing timestamps. To illustrate this algorithm, the following pseudo code
assumes that the variable m events is a linked-list of events sorted by increasing time
stamps:

time = 0;
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while (!m_events.empty ())

{

Event event = m_events.front ();

m_events.pop_front ();

time = event.time;

event.function ();

}

Network event-driven simulations

While many events can happen in the real world, network simulations usually model only
those that are related to the creation and processing of the packets that store the informa-
tion that must be exchanged between hosts interconnected by a communication network.
Typical events include the start or the end of a packet transmission or reception, the ex-
piration of a timeout, or a direct user interaction such as plugging in a network copper
cable/optic fiber or starting the download of a file.

A network simulation thus mostly contains models to create and process packets. For
example, to model the behavior of the finite-sized transmission buffer located between a
TCP stack and a wireless transmitter, we merely need to create events for the arrival and
the departure of packets in that buffer. It is then possible to derive through simulation
the probability of packet loss due to the buffer being full when a new packet arrives as a
function of the arrival and departure patterns.

To be able to easily observe and analyze the detailed interaction between the TCP and
the MAC wireless layer of our content distribution system, our researchers would need to
create and implement a set of models for each layer, and then instantiate them once for
each device of our wireless network. While these models might not accurately reflect the
behavior of the underlying system, setting up, executing, and tracing the exact sequence
of events that happens during such a simulation is orders of magnitude easier than using
a testbed or a field experiment where the protocol implementations run inside a closed
hardware device, in an Operating System Kernel, and on distributed physical systems. A
certain amount of realism might have been lost but control, reproducibility, and the ability
to debug the system have been increased considerably.

Beyond perfect reproducibility and excellent debugging capability, another good reason
to use simulations in the example we consider here is cost: while the cost of the hardware
devices needed to setup a small-scale field test or testbed is very low, it is still much cheaper
to use a similarly-sized simulation on a single machine or a very large simulation on one of
the many computing clusters that are readily available to every researcher.

1.1.4 Emulation

Despite their many positive characteristics, simulations are often seen as lacking realism
because they are based on the design of models which attempt to define simple abstrac-
tions of the real world. A common approach to deal with this issue, yet maintain the
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excellent reproducibility and debugging capability of typical simulations is to extend these
simulations with Direct Code Execution (DCE) capabilities to execute within a simulator
the real protocol implementations generally used in testbeds or field experiments.

1.1.5 Mixed experiments

Another way to scale up the size of an experiment cheaply, maintain a high degree of
realism and increase controllability and reproducibility is to use a mixed experimentation
environment where a testbed, a field experiment, and a simulation synchronized to a real-
world clock are used together. The simulation can be used to scale up the size of the
experiment in terms of the number of network devices present and provide a high degree of
control and reproducibility while its interconnection with a testbed or a field experiment
ensures that a certain degree of realism is maintained.

Mixed experiments are, however, rarely used in practice because the complexity of
setting them up is very high: users must configure compatibly both their testbed and
their simulation which makes it impossible to use the native setup capabilities of each
experimentation tool and thus requires a lot of manual work.

1.2 Problem

Many more variants of field experiments, testbeds, and simulators could be profitably used
to study the example we have described here but their characteristics would all be fairly
similar. Table 1.1 extends upon [4] to present a synthetic view of these characteristics.

Simulation Emulation Mixed experiment Testbed Field test
− Model based − Model based +/− Real system + Real system ++ Real system
− Algorithm + Real code +/− Real code + Real code ++ Real code
− Simplified + Accurate +/− Accurate + Accurate ++ Accurate
+ Insight + Insight +/− Insight − Black box −− Black box
++ Scalable + Scalable +/− Scalable − Not scalable −− Not scalable
++ Fast + Fast +/− Fast − Slow −− Slow
++ Flexible + Flexible +/− Flexible − Not flexible −− Not flexible
++ Repeatable ++ Repeatable +/− Repeatable − Variable −− Variable
++ Cheap ++ Cheap +/− Cheap − Expensive −− Expensive
++ No sysadmin ++ No sysadmin +/− Sysadmin − Sysadmin −− Sysadmin
++ No deployment ++ No deployment −− Deployment − Deployment −− Deployment

Table 1.1: Characteristics of existing experimentation tools

The most striking conclusion that can be drawn from this table is that the perfect tool
does not yet exist which means that users interested in exploring the behavior of a complex
system must use more than one tool: a field test will provide difficult to reproduce but
realistic data while the corresponding simulation could be used to explore repeatedly the
same experiment with much less realism.
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The natural solution to this problem would preferably be to use either emulation or
mixed experiments: these experimentation environments can be useful on their own thanks
to their useful combination of realism, reproducibility, scalability, etc. but their most
important feature is that they are sufficiently close to full-blown testbeds or field tests to
make it easy to switch to them when very high realism is needed. Comparatively, pure
simulations suffer from their lack of model realism and the use of software abstractions
that are so different from the real world that simulated network protocols must be re-
implemented prior to field or testbed experiments.

In practice, though, two important factors contribute to make it hard to use emulation
and mixed experimentation environments: mixed experiments are extremely complex to
configure, setup, and deploy and emulation is always limited to constrained systems where
the size and complexity of the glue layers needed to adapt the simulation environment to
the protocol runtime environment is minimal.

1.3 Contributions

In this thesis, we demonstrate the practicality of addressing both issues by attacking the
problem from multiple perspectives:

• First, we have implemented the core facilities needed to make ns-3 the first network
simulator to support transparently and efficiently the automatic conversion of net-
work packets to and from simulation objects, hence paving the way to transparent
support for real-time simulation in every ns-3 model.

• Second, we have designed a flexible unified experiment description model which is
the key to allow the automated setup and deployment of mixed experiments which
involve a real-time simulation, a testbed, and a field experiment.

• Third, we have radically extended the scope of the emulation tools’ capabilities by
integrating within ns-3 a Direct Code Execution (DCE) framework which encom-
passes both user space and kernel space protocol implementations written in C or
C++ for Linux. Contrary to previous work, our solution is both highly efficient and
extremely robust, able to deal with arbitrary protocol constructs.

While we originally intended to build these new features within the Yet Another Net-
work Simulator (Yans) [5] prototype network simulator, we seized the opportunity of joining
the ns-3 team whose objectives were similar to our own to broaden considerably the impact
of our work. This is how a large fraction of the software modules we developed during this
thesis are now in use by many network researchers around the world.

1.4 Outline

Before considering what sets ns-3 apart from other network simulators, chapter 2 gives
an introduction to its design and its architecture and highlights the work that went into
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making ns-3 a robust, full-fledged network simulator that supports many realistic models
and that is used by a growing user community.

In chapter 3, we describe the ns-3 packet facility that is used to store the protocol
data exchanged between network entities. We outline how our focus on simulation real-
ism shaped its implementation and how its main distinctive feature, that is, its native
transparent support for the conversion back and forth between real network packets and
simulation packets is instrumental to enable the Direct Code Execution facility described
next and the transparent support for real-time simulations used by NEPI [6].

We build upon this groundwork in chapter 4 to extend considerably the scope of the
realism of ns-3 through the integration within the simulator itself of arbitrary linux user
space applications as well as the complete Linux kernel network stack. We introduce in this
chapter a new lightweight virtualization technology which we coin User space virtualization
based on the use of compiler-generated ELF PIC assembly code and an ad hoc program
loader to supplement the deficiencies of the default GNU C library ELF loader. We then
describe and evaluate the CPU and memory performance of the wrapper layers used to
provide the emulation of the user space and the kernel space APIs necessary to embed
Linux applications together with the linux kernel network stack within the simulator.

Finally, chapter 5 considers the problem of extending the scope of a realistic testbed
towards larger scale experiments: we outline how real-time simulations can be used as
emulators within an existing testbed to deal with this issue and then illustrate the feasibility
of this approach in the case of a simple virtualization testbed based on linux network
namespaces interconnected to an ns-3-based emulator. Because the complexity of manually
setting up such a mixed experiment is daunting, we finally proceed to describe how we
designed and implemented NEPI, a tool used to describe, and automatically deploy and
configure mixed experiments.
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The objectives pursued in this thesis called for a network simulator that would fulfill
many requirements. First and foremost, this network simulator should provide a high
degree of realism so that it is easy to either use it as a real-time emulator in a larger testbed
or to execute directly within the simulator existing real-world protocol implementations.

Our experience with using other network simulation tools led us to focus on a number
of important features that are critical to ensure that this simulator becomes widely used
by many researchers for a long time:

• It should favor the creation of a thriving community of network researchers able to
contribute to its evolution through the addition of new models and able to take over
the maintenance, validation, and verification workload of existing models.

• It should provide a solid software architecture that can withstand extensions and
abuse from many different contributors over long periods of time.

• It should make it possible to perform complex simulations. Furthermore, commonly-
used scenarios should be easy to describe and run.

Sadly, we realized early on that none of the existing network simulators could fulfill all of
these requirements together and that we would have to first invest considerable resources
in the development of a new simulation engine before we could focus on the components
necessary to achieve our long term goals of a realistic simulation framework.

In this chapter, we provide some historical background on how ns-3 came to be, and we
report on its core software architecture. Before discussing some of the technical details of
its low-level interfaces, we review first in section 2.1 the other simulators that we considered
when we started working on this thesis. We describe in section 2.2 the steps we took to
ensure the long-term survival of this project, and then, discuss in 2.3 the salient features
of the ns-3 discrete time event-driven simulation engine. Section 2.4 outlines how the ns-
3 object model provides a unified interface to common simulation tasks without forcing
every model implementation to adopt a rigid structure. Finally, section 2.5 describes the
basic architecture of the ns-3 network models and highlights its close relationship to the
structure of the network stack found in any UNIX system.

2.1 Not Invented Here

In the 2004/2005 time frame, when we started to work on this thesis, we first considered
a few Java-based network simulators such as JiST [9], J-SIM [19] and SSFNet [11] but
we eliminated them from consideration on the basis that we wanted to be able to directly
simulate existing C/C++ socket-based routing daemons and TCP/IP stacks. We felt that
providing a tight level of integration between such C/C++ codebases and a Java simulation
core would be too painful. Technologies such as Java Native Interface (JNI) might have
made it possible to switch back and forth between the C and the Java runtime but we
believed that it would be more productive to focus on a C/C++-only solution to minimize
the size of the necessary adaptation layer.
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Although commercial simulators such as Qualnet [27] and Opnet [16] were available
under favorable terms to academics, and they clearly had sufficient financial resources and
backing to be able to live on over the kind of time frame we had in mind, we perceived
them as being unwilling to encourage the rise of an open and thriving user community able
to meaningfully engage, contribute and influence the development of the tool.

The strongest contender back in 2005 appeared to be Objective Modular Network
Testbed ++ (OMNeT++) [28] because it had a reasonably-sized user and contributor
community and more favorable licensing terms for commercial users, but the component-
based programming model was judged to be incompatible with our code reuse objectives.

ns-2 [3] was the more natural choice because of its considerable existing user commu-
nity, fully open source nature, and because we had personal experience with this simulator
and its previous incarnation ns [25] in research. We also knew about many of its weak-
nesses; most notably, the software had never been designed with long-term maintenance
in mind (lack of coding and documentation standards, lack of maintainable validation and
verification tests), the split-object model was difficult to debug, and the Tool Command
Language (Tcl) programming language was becoming less popular. The level of abstrac-
tion in some of the core ns-2 objects such as packets and addresses hindered our model
realism, emulation, and code reuse goals.

For a short while, we considered creating a C++-only simulator from the ns-2 codebase:
initial prototypes showed that it was possible and we might have been able to pull off a
slow refactoring of the entire codebase in that direction, but this would have required that
we rewrite all Tcl models in C++ or drop them altogether and we felt that doing so would
negate the whole point of re-using an existing codebase with its models. We also did not
feel that we had the resources to maintain an ns-2 backward-compatibility layer.

When it became clear that none of the simulators available would match our require-
ments, we started the development of the prototype simulator Yans [21]. Yans was never
widely used outside of its core developers but the experience we gained while implementing
it was critical to validate a number of key software architecture elements.

Eventually, in 2005, when the design and initial development of ns-3 started, we did
let go of Yans and started to contribute to ns-3. This decision was not very easy because
we were concerned that we would waste too many resources developing the low-level guts
of a new simulator without guarantee that it could become useful outside of our small
development team. However, in hindsight, there is nothing to regret: the efforts invested
in building a solid simulation core paid off considerable productivity, stability and ease of
use rewards later when we started to integrate existing real-world protocol implementations
in ns-3 through our Direct Code Execution environment (see chapter 4).

2.2 A thriving contributor community

As hinted at above, when the development of ns-3 started, one of the central questions
which was discussed at length revolved around how we could make sure that the tool we
were building would be useful to others beyond our small development team. Specifically,
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we did not know how we could encourage the creation and the growth of a community of
network researchers willing to contribute to its long-term evolution and maintenance to
ensure its survival and continued usage after our initial development funding dried out.

It is hard to claim that we have already been successful in creating a thriving community
of contributors who will be able, in time, to take over the maintenance of ns-3 as a whole
but there are continuously-improving metrics which show considerable progress towards
that goal. For example, figure 2.1 highlights the gradually-increasing total number of users
currently registered on the ns-3 user mailing-lists.
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Figure 2.1: Number of users subscribed to the ns-3-users mailing-list as a function of time

Books such as [14] now cover extensively every aspect of the problem of creating a
successful open source community but we report here on the most useful and costly steps
we took towards this goal in the hope that this serves as a helpful experience for other
researchers intending to replicate this approach in other projects.

A time-based release process

As soon as the overall ns-3 architecture settled down, the project moved away from its pre-
alpha state to a regular time-based release process with one release every three months:
right after every release, a new development cycle starts with the merging of new major
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de-stabilizing features in the main development source tree. This tree is then slowly frozen
until the new features are fully documented, and their tests pass on every hardware and
software we support, hopefully in time for the end of the development cycle.

While the above is necessary to allow the ns-3 maintainers to ship stable high-quality
releases, the predictability and regularity of this cycle is also critical to allow external con-
tributors and, more generally, every maintainer of a module to plan their own development
schedules and synchronize on the merge window. Rather than try to forcibly merge unfin-
ished modules before the freeze deadline, our users know that if they are not ready for the
current merge window, they can aim for the next merge window that is only a couple of
weeks or months away.

Originally, this process was established solely as a software engineering technique to
manage our own internal development tasks but the side-effect of its predictability and
regularity is to facilitate and thus encourage contributions to ns-3.

Transparent communication

Another key step we took towards encouraging new contributors to join the project was
to forbid the use of private email correspondence or hallway discussions for technical or
management matters and to always use our public development mailing-lists. We thus
occasionally exposed publicly a few flame-wars and strongly-worded technical discussions
but the temporary embarrassment due to these was more than offset by the useful input
that many users contributed to these discussions.

While the amount of time spent conducting these discussions over low-bandwidth email
rather than face to face is daunting, we feel that being so open early on is what convinced
many of our early serious contributors that it was worth joining the project.

2.3 Discrete time event-driven simulations

As pointed out in section 1.1.3 where we described the fundamental concept behind discrete
time event-driven simulations, it is easy to implement a toy simulation runtime that can
process events. However, the implementation found in a real simulator is considerably
more complex due to the need to export this functionality behind a programming interface
that is easy to use and that does not significantly affect performance.

We already discussed in section 1.1.3 the event execution main loop but there are other
operations that are fundamental to a discrete time event-driven simulator:

• Run: execute every event in order of increasing timestamps until there are no more
events or the user triggers Stop.

• Stop: set the global stop flag to true to make sure that the Run function returns at
the next available opportunity.

• Now: return the current simulation time.
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• Schedule: create a new event, insert it in the global event list, and return a reference
to the newly-created event.

• Cancel: disable the execution of an event that is present in the global event list.
Cancel is usually considered a constant-time operation that merely sets a disabled
flag in the event that is checked by Run before executing that event.

• Remove: Remove an event from the global event list to ensure that it is never
executed. This operation is usually considered to be of O(n) complexity (where n is
the number of events).

• Status: return whether an existing event has expired or is still running

In practice, there is very little variance across different simulators in the way these functions
are exported to users except on the way the simulation time is represented and on how
simulation events are created and managed.

In the next two sections, we focus on these two aspects of the ns-3 simulation runtime
library. We first consider the representation of simulation time in section 2.3.1 and then
discuss how simulation events are created and managed later in section 2.3.2.

2.3.1 Time

Despite its apparent simplicity, the management of the timestamp associated with each
simulation event is far from being trivial as discrete-time simulators must fulfill a number
of important requirements. First, a simulator must ensure that the behavior of the same
simulation is always exactly the same, regardless of the hardware and software platform it
is running on. Specifically, the simulator should ensure that events are never re-ordered and
that their expiration time is always the same when moving from one platform to another.

Another important requirement is the need to provide a large range of high-resolution
timestamps: some network simulations need nanosecond resolution over periods of time as
long as a couple of months, and sometimes a couple of years.

Finally, the performance and ease of use of the Application Programming Interface
(API) used to manipulate the user-visible simulation time is also critical since simulation
models need to manipulate this simulation time heavily, if only to schedule events and
calculate the delay until they expire.

Related work

The most straightforward way to represent simulation time is to use a double-precision
floating point type [22]. The 52-bit wide mantissa provided by these 64-bit floats makes it
possible to represent 252

1000000×60×60×24×365
= 142 years of simulation time with microsecond

precision or a bit less than two months when nanosecond precision is needed. Many
simulators such as ns-2 [3], Georgia Tech Network Simulator (GTNetS) [15], and early
versions of OMNeT++ [28] chose to do so.
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While this range is sufficient in most cases, the use of floating point arithmetic intro-
duces many portability problems that hamper our reproducibility objectives: the result of
these arithmetic operations depend heavily on the specifics of the underlying CPU floating
point unit, Operating System (OS), compiler and runtime library implementation. The
excess precision provided by the Intel x86 64-bit floating point representation of doubles
is probably the most well-known example of this problem: users who attempt to run their
code on an IEEE-conformant 64-bit floating point unit often realize too late that their
arithmetic computations implicitly rely on the excess precision provided by x86 hardware
and then give up on trying to obtain the same results on different platforms.

Because the semantics of integer arithmetic are much simpler to define precisely, their
implementations do not suffer from the reproducibility problems that plague floating point
arithmetic. Simulators such as Global Mobile Information Systems Simulation Library
(GloMoSim) [29] and later versions of OMNeT++ [28] that are more concerned with better
reproducibility over a wide range of hardware and software platforms and that intend to
support a larger timestamp range with at least nanosecond resolution thus usually chose
instead a 64-bit wide fixed-point integer to represent simulation time. This increases the
simulation time range up to 584 years for nanosecond resolution but most critically makes
it much easier to obtain the same simulation results on different platforms.

The choices made by the simulators discussed here are summarized in table 2.1.

64-bit float 64-bit integer resolution

ns2 X second
GTNetS X second
OMNeT++ 3.x X varying
OMNeT++ 4.x X varying
GloMoSim X X nanosecond

Table 2.1: Time type in existing simulators

Integral types still need floats

While fixed-point integers provide the foundation on which long-running, reproducible, and
efficient simulations can be built, they still suffer from one sizable problem: it is not easy
for users to perform even simple computations with integer time values that avoid overflow
and still preserve accuracy. For example, to calculate the bandwidth from the number of
bytes received and the delay between the first and the last byte received, one might write
something along the lines of:

1 i n t nbytes = . . . ;
2 u i n t 6 4 t de l ay ns = . . . ;
3 u i n t 6 4 t bandwidth bytes per s = nbytes ∗ 1000000000 / de lay ns ;

The above would however give invalid results most of the time since the type of the variable
nbytes is int (that is, 32bit in general), and multiplying it by one billion is almost surely



18 CHAPTER 2. NS-3: A NEW SIMULATION TOOL

going to overflow, hence, giving a final result that is meaningless. This code could, of
course, be rewritten to trade-off the likely overflow by a less likely underflow:

1 i n t nbytes = . . . ;
2 u i n t 6 4 t de l ay ns = . . . ;
3 u i n t 6 4 t bandwidth bytes per s = nbytes / ( de l ay ns / 1000000000) ;

which, however, would trigger a division by zero if the delay is smaller than one second.
In general, even simple computations that manipulate time variables are likely to need

temporary variables of much higher range or precision than what native integer types can
provide, hence leading to either incorrect final results or to computations that are rewritten
to use floating point variables as follows:

1 i n t nbytes = . . . ;
2 double de l ay ns = . . . ;
3 double bandwidth bytes per s = nbytes / ( de l ay ns / 1000000000) ;

Of course, using floating point arithmetic to perform these computations leads back to the
reproducibility problems discussed in previous section.

Another problem commonly observed when using floating point numbers to represent
simulation time is that the definition of equality, and more generally, of ordering relation-
ships between timestamps becomes much more complex to state and use correctly. For
example, to maximize the reproducibility of the arithmetic operations involving times-
tamps over a wide range of platforms, two floating point timestamps t1 and t2 are often
defined as being equal iff |t1 − t2| ≤ δ where δ is a small floating point number which
depends on the currently-chosen time resolution. In practice, when definitions such as
these are used, most model developers ignore them which results at best in unexpected
simulation results due to differing interpretations of what being equal means.

Implementation

Because one of the objectives pursued by ns-3 was to ensure that the same simulation
running on two different platforms would give the same results, we felt compelled to go
beyond what existing network simulators did towards that goal and to provide a means
for model developers to ensure that they can perform easily complex computations while
avoiding the dreaded problems coming from floating point arithmetic.

The solution which ns-3 settled upon is based on the same 64-bit integral type used by
GloMoSim and OMNeT++ to represent simulation time. This simulation time is exported
to users through a special class type named Time. This class is used to hide the time
resolution currently in use: it can be converted to and from seconds, nanoseconds, etc.
Similarly to the OMNeT++ SimTime class, Time overloads the C++ addition, subtraction,
and comparison operators to improve the readability of typical user code. Typical use-cases
are shown below:

1 Time t = Seconds ( 1 0 . 2 ) ;
2 Time ns = NanoSeconds ( 1 0 0 3 ) ;
3 i f ( ( t − ns ) >= MicroSeconds ( 1 0 ) )
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4 {
5 // do something
6 }
7 i n t 6 4 t us = t . GetMicroSeconds ( ) ;

However, instead of following the choice made by OMNeT++ of overloading the multipli-
cation and division operators and implementing them with floating point arithmetic that
lose precision and range, ns-3 provides an implicit conversion operator from Time to the
new integral type int64x64 t.

int64x64 t is a fixed point integral type that supports a 64-bit integer part and a 64-
bit fractional part (the x letter used in its type name denotes the position of the fractional
point). It overloads all the C++ arithmetic operators (+, -, *, /, 〈, etc.) and implements
them by performing only integer computations. On 32bit systems, it uses a software im-
plementation of 128-bit arithmetic operations that was originally written for early versions
of the Cairo library [2]. On 64-bit systems, it attempts instead to use the much faster gcc
extensions for 128-bit arithmetic that are based on the int128 t type.

This new facility trivially provides the same computation results on every platform,
while making it possible for users to perform arithmetic operations whose final result
depend critically on intermediate variables with fractional elements. For example, to cal-
culate an approximation of 0.5×500000 (500kbit/s during 0.5s gives 250kbits transmitted),
a user willing to risk getting different results on different platforms due to floating point
arithmetic could write:

1 double a = 0 . 5 ;
2 double b = 500000;
3 double c = a ∗ b ;

A user who cares about getting the same result on every platform might try to hardcode
himself a constant multiplication factor with am integer type too small for his data (say,
1000 with 32-bit integers):

1 i n t 3 2 t a = 500 ;
2 i n t 3 2 t b = 500000000;
3 i n t 3 2 t c = a ∗ b / 1000 ; // oops : over f l ow

This user might be smart-enough to use a big-enough integer type (say, 64-bit):

1 i n t 6 4 t a = 500 ;
2 i n t 6 4 t b = 500000000;
3 i n t 6 4 t c = a ∗ b / 1000 ; // r i g h t r e s u l t !

But, with ns-3 he can trivially write the simpler code shown below to obtain the same
correct result on every platform:

1 i n t 64x64 t a = 0 . 5 ;
2 i n t 64x64 t b = 500000;
3 i n t 64x64 t c = a ∗ b ;

Avoiding conversions to floating point variables is now easy which makes it possible to
rewrite the bandwidth calculation discussed in previous section as follows:
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1 i n t nbytes = . . . ;
2 Time delay = . . . ;
3 i n t 64x64 t bandwidth = nbytes / de lay . GetS ( ) ;

The complexity of the resulting 64.64 arithmetic operations are well hidden from the
user but their CPU efficiency on 32-bit CPUs is potentially problematic due to the use
of a software-only 128-bit arithmetic implementation. Until hardware devices which sport
hardware optimized 128-bit arithmetic units (devices such as every modern 64-bit CPU)
are more widely adopted, it is important to quantify the overhead introduced by the use
of this facility which is the topic of the following section.

Performance evaluation

To evaluate the overhead introduced by our use of 128-bit integer arithmetic we first
consider a micro benchmark designed to capture the CPU cost of int64x64 t arithmetic
operations relative to that of simpler int64 t and double operations. This benchmark
estimates the average runtime needed to execute one arithmetic operation by measuring
the runtime of a loop that repeats the same operation one billion times. The source code
was compiled with the highest optimization level (-O3) and the generated assembly was
checked to ensure that the inner loop does contain only the instructions that correspond
to the operation of interest. This measurement was repeated at least ten times until the
relative standard deviation drops below 0.05. Table 2.2 reports the result of this benchmark
for the four primitive arithmetic operations applied on each of the types of interest on both
a 32bit and a 64-bit system.

add (ns) cmp (ns) mul (ns) div (ns)

32-bit CPU
int64 t 1.08 1.83 6.69 12.0
double 1.36 1.48 2.25 2.63
int64x64 t 5.37 4.90 88.1 119

64-bit CPU
int64 t 0.67 1.46 2.17 17.1
double 1.31 1.48 2.17 2.60
int64x64 t 3.13 1.32 13.3 88.0

Table 2.2: Average runtime per 64.64 arithmetic operation on a 32bit and a 64-bit processor

While table 2.2 highlights the considerably higher cost on both 32bit and 64-bit systems
of performing a 64.64 arithmetic operation instead of the equivalent double or int64 t

operations, in practice, there is no direct relationship between the overhead measured here
and the overhead observed in a real simulation because these computations represent only
a fraction of the total amount of work done during any simulation.

Equation 2.1 illustrates how we can estimate from the per-operation costs reported in
table 2.2 the total simulation runtime that was spent performing these computations:

Tarith = Nadd × tadd +Ncmp × tcmp +Nmul × tmul +Ndiv × tdiv (2.1)
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For every example simulation scenario present in ns-3, we thus measured its total runtime
(Ttotal) and the number of operations performed. We then estimated the time spent
performing these arithmetic computations with int64x64 t (Tarith64.64) and compared it
with the time that would be spent if we used instead double arithmetic (Tarithdouble).
Table 2.3 presents these results for the four simulation scenarios that exhibited the highest
estimated relative overhead defined by equation 2.2

Toverheadest = 100× Tarith64.64 − Tarithdouble

Ttotal
(2.2)

Hardware Scenario Toverheadest (%) Ttotal (s)

32bit

wimax/wimax-multicast 5.27 0.57
wimax/wimax-ipv4 4.27 0.29
wireless/mixed-wireless 3.24 0.16
csma/csma-star 2.01 2.23

64-bit

wimax/wimax-multicast 1.08 0.36
wimax/wimax-ipv4 0.84 0.19
wireless/mixed-wireless 0.56 0.12
csma/csma-star 0.48 1.49

Table 2.3: Relative estimated overhead for scenarios that exhibit the highest estimated
overhead

On 64-bit systems, when the int128 t facility is available, the overhead of the extra
reproducibility provided by int64x64 t is less than one percent, and thus negligible. While
the software implementation used on 32bit systems is less efficient and can incur up to five
percent overhead on the macro-level benchmarks conducted here, this overhead is still
within what is acceptable given the higher safety and reliability obtained.

2.3.2 Event management

While being able to describe and manipulate the simulation time is important to be able
to execute a discrete time event-driven simulation, it is also necessary to be able to create
events, associate with them a piece of code to execute when they expire, and return a
reference to them that can later be given back to the Cancel, Remove and Status
functions.

A C implementation

In a C-based simulator, the only way to represent an arbitrary piece of code would be to
use a function pointer. The example below shows how this might be done:

1 s t r u c t Event {
2 void (∗ f unc t i on ) ( s t r u c t Event ∗ ) ;
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3 Time timestamp ;
4 bool cance l ed ;
5 } ;
6 void Schedule (Time delay , s t r u c t Event ∗ event ) ;

To use the above, a user would have to create his own event type:

1 s t r u c t MyEvent {
2 s t r u c t Event ev ;
3 // extra f i e l d s here .
4 } ;
5 s t a t i c void my funct ion ( s t r u c t Event ∗ev ) {
6 s t r u c t MyEvent ∗ event = ( s t r u c t MyEvent ∗) ev ;
7 // do my th ing here
8 }
9 s t r u c t MyEvent ∗ event = mal loc ( s i z e o f ( s t r u c t MyEvent ) ) ;

10 event−>f unc t i on = &my funct ion ;
11 Schedule ( Seconds (10 ) , event ) ;

A C++ implementation

In C++, the above is somewhat easier to do and can be rewritten as:

1 c l a s s Event {
2 pub l i c :
3 v i r t u a l void Expire ( void ) = 0 ;
4 p r i v a t e :
5 Time m timestamp ;
6 bool m canceled ;
7 } ;
8 void Schedule (Time timestamp , Event ∗ event ) ;
9 void Cancel ( Event ∗ event ) ;

10 void Remove ( Event ∗ event ) ;

so that users can derive from the Event base class and provide their own version of the
Expire method:

1 c l a s s MyEvent : pub l i c Event {
2 v i r t u a l void Expire ( void ) {
3 // do my th ing here
4 }
5 } ;
6 MyEvent ∗ event = new MyEvent ( ) ;
7 Schedule ( Seconds ( 1 0 . 0 ) , event ) ;
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Stop and wait ARQ

A common problem with the approach considered so far is that it forces the user to create
one subclass for each kind of event that can happen. To illustrate how painful this can
be, we consider the case of a simple stop-and-wait Automatic Repeat Request (ARQ)
[26] protocol that implements error control by waiting for an Acknowledgment (ACK)
packet after sending each data frame: if the ACK timeout expires before an ACK is
received, the sender retransmits the data frame and waits again for the ACK. This protocol
requires the sender to deal with three types of events: DataReceived, AckReceived and
AckTimeout.

Whenever we receive data, we need to send back an ACK:

1 c l a s s DataReceived : pub l i c Event {
2 StopAndWaitArqProtocol ∗m src ;
3 StopAndWaitArqProtocol ∗m dst ;
4 Data ∗m data ;
5 v i r t u a l void Expire ( void ) {
6 AckReceived ∗ ack = new AckReceived ( ) ;
7 ack−>m src = m dst ;
8 ack−>m dst = m src ;
9 ack−>m data = m data ;

10 Time delay = . . . ;
11 Schedule ( delay , ack ) ;
12 }
13 } ;

Whenever we receive an ACK, we need to cancel our ACK timeout and send the next
packet present in our transmission queue:

1 c l a s s AckReceived : pub l i c Event {
2 StopAndWaitArqProtocol ∗m src ;
3 StopAndWaitArqProtocol ∗m dst ;
4 Data ∗m data ;
5 v i r t u a l void Expire ( void ) {
6 i f ( m dst−>m currentData != m data ) {
7 // we a r r i v e d too l a t e ?
8 } e l s e {
9 Cancel ( m dst−>ackTimeout ) ;

10 Data ∗next = m dst−>m txQueue−>GetNext ( )
11 m dst−>Send ( next ) ;
12 }
13 }
14 } ;

If we are not lucky and the ACK is not received before the ACK timeout expires, we need
to retransmit our data:

1 c l a s s AckTimeout : pub l i c Event {
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2 StopAndWaitArqProtocol ∗m sender ;
3 v i r t u a l void Expire ( void ) {
4 m sender−>Send ( m protocol−>m sender ) ;
5 }
6 } ;

Finally, to send data, we first start the ACK timeout and then create a receive event for
the receiver.

1 c l a s s StopAndWaitArqProtocol {
2 f r i e n d c l a s s AckTimeout ;
3 f r i e n d c l a s s AckReceived ;
4 f r i e n d c l a s s DataReceived ;
5 StopAndWaitArqProtocol ∗m other ;
6 void Send ( Data ∗data ) {
7 m currentData = data ;
8 AckTimeout ∗ t imeout = new AckTimeout ( ) ;
9 timeout−>m sender = t h i s ;

10 Schedule ( Seconds ( 1 ) , t imeout ) ;
11 Time delay = . . . ;
12 DataReceived ∗ r e c e i v e d = new DataReceived ( ) ;
13 r ece ived−>m src = t h i s ;
14 r ece ived−>m dst = m other ;
15 Schedule ( delay , r e c e i v e d ) ;
16 }
17 } ;

The problem with this approach is that we are forced to split the entire protocol im-
plementation in many subclasses which need to manipulate both state that is local to
themselves and that is shared with the protocol instances communicating together.

ns-2, GTNetS, OMNeT++

To alleviate this pain, existing simulators such as ns-2, GTNetS and OMNeT++ [3, 15, 28]
split the Event class in two:

1 c l a s s Event {
2 Time m timestamp ;
3 bool m canceled ;
4 } ;
5 c l a s s Handler {
6 v i r t u a l void Invoke ( Event ∗ event ) = 0 ;
7 } ;
8 Schedule (Time delay , Handler ∗handler , Event ∗ event ) ;

which makes it possible to rewrite the stop and wait ARQ example as follows:

1 c l a s s StopAndWaitEvent : pub l i c Event {
2 enum Type type ;



2.3. DISCRETE TIME EVENT-DRIVEN SIMULATIONS 25

3 StopAndWaitArqProtocol ∗ s r c ;
4 StopAndWaitArqProtocol ∗dst ;
5 Data ∗data ;
6 } ;
7 c l a s s StopAndWaitArqProtocol : pub l i c Handler {
8 v i r t u a l void Invoke ( Event ∗ev ) {
9 StopAndWaitEvent ∗ event = ( StopAndWaitEvent ∗) ev ;

10 switch ( event−>type ) {
11 case ACK TIMEOUT:
12 // . . .
13 break ;
14 case ACK RECEIVED:
15 // . . .
16 break ;
17 case DATA RECEIVED:
18 // . . .
19 break ;
20 }
21 }
22 } ;

This programming interface reduces the amount of boilerplate necessary to implement
typical protocols and centralizes the entire protocol event handling behind a single entry
point which generally improves its maintainability and readability. However, it does so at
the cost of storing all the information about different events in a shared data structure
(the StopAndWaitArqEvent class in this example). In simple cases like here, when most
events use the same fields with the same semantics, this works fine but for more complex
protocols, when the number of events grows and the number of fields that are useful to
only a subset of these events grows, figuring out which fields should be used by each event
becomes a real problem.

Forwarding event subclasses

Another option that no existing simulator uses but that nicely deals with the problem
outlined above involves the use of forwarding Event subclasses. Instead of splitting the
Event base class in an Event plus subclassable Handler class, we can instead implement
one subclass per event type that forwards the event to the protocol implementation. For
example:

1 c l a s s AckReceived : pub l i c Event {
2 AckReceived ( StopAndWaitArqProtocol ∗ ackReceiver , Data ∗data ) ;
3 v i r t u a l void Expire ( void ) {
4 m ackReceiver−>AckReceived ( data ) ;
5 }
6 } ;
7 c l a s s StopAndWaitArqProtocol {
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8 void DataReceived ( Data ∗data ) {
9 . . .

10 AckReceived ∗ack = new AckReceived ( m other , data ) ;
11 Schedule ( delay , ack ) ;
12 }
13 void AckReceived ( Data ∗data ) {
14 . . .
15 }
16 } ;

The need to implement one forwarding Event subclass per event type increases the amount
of boilerplate code that users need to write but it makes it possible to clearly separate
the data specific to each event while still allowing the entire protocol implementation to
be centralized in a single class, hence maximizing the readability and maintainability of
complex protocol implementations.

The ns-3 implementation

To improve upon the forwarder Event subclass solution described above, ns-3 uses C++
templates to generate automatically their code. In the case of our ARQ example, the
amount of boilerplate code becomes zero. Schedule now takes a variable number of argu-
ments: the first argument is still the delay until the event expires, the second argument is
a pointer to the member method to invoke when the event expires, the third argument is
the object on which the member method should be invoked and all subsequent arguments
are forwarded as-is to the target member method.

1 c l a s s StopAndWaitArqProtocol {
2 void DataReceived ( Data ∗data ) {
3 . . .
4 m ackTimeout . Cancel ( ) ;
5 Schedule ( delay , &StopAndWaitArqProtocol : : AckReceived ,
6 m other , data ) ;
7 }
8 void Send ( Data ∗data ) {
9 m ackTimeout = Schedule ( m timeoutDelay ,

10 &StopAndWaitArqProtocol : : AckTimeout ,
11 th i s , data ) ;
12 Time delay = . . . ;
13 Schedule ( delay , &StopAndWaitArqProtocol : : DataReceived ,
14 m other , data ) ;
15 }
16 void AckReceived ( Data ∗data ) {
17 . . .
18 }
19 } ;
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In simple protocol implementations, it is of course still possible to keep the switch-based
code organization that GTNetS, OMNeT++, and ns-2 enforce but when the protocol com-
plexity increases, it is easy to split the event handlers in separate functions with different
arguments. The following illustrates the case where a user would want to emulate the
facility provided by these less flexible simulators:

1 c l a s s StopAndWaitArqProtocol {
2 void Handle (enum StopAndWaitArqEventType type , Data ∗data ) {
3 switch ( type ) {
4 case DATA RECEIVED:
5 m ackTimeout . Cancel ( ) ;
6 Schedule ( delay , &StopAndWaitArqProtocol : : Handle ,
7 m other , ACK RECEIVED, data ) ;
8 break ;
9 case ACK TIMEOUT:

10 . . .
11 break ;
12 case ACK RECEIVED:
13 . . .
14 break ;
15 }
16 }
17 } ;

While the complexity of the implementation of these template-based forwarding events
(based on the ideas developed in [7] about generalized bound functors) might scare away
more than one C++ programmer, their flexibility and ease of use make them ideal to
implement very simple protocols as well as complex systems that use many kinds of events.

2.4 The ns-3 Object model

So far, we have not discussed the more challenging aspects of conducting real simulations
that integrate many models together and that try to extract information about the behavior
of the underlying protocols: creating and managing events and simulation time is useful
but not sufficient. In this section, we discuss some of the other challenges that a real
simulation engine needs to tackle to become more useful. We highlight especially the need
for these facilities to be accessible in a uniform way, to ensure that the resulting system is
easy to use.

2.4.1 Requirements

A network simulation which studies only one specific protocol in isolation such as the stop
and wait ARQ protocol described in previous section is very rare. In practice, it is much
more common to focus on the complex interactions between two or more protocol layers
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and thus to integrate together in a single simulation a set of models potentially developed
by many independent researchers. The most challenging problem here is that we need to
make it easy to use these models together: they need to obey a number of common rules
to simplify typical simulation tasks such as parameter configuration, trace collection, but
also to do so in a way that is still consistent with software modularity and robustness.

Memory management might be overlooked but doing so would ignore the fact that
C++ is not a garbage-collected language and that it thus requires the manual management
of the memory allocated to each object. Automating this task and making sure that every
model used in ns-3 follows the same policy is critical to make it possible for mere mortals
to setup and run a complex simulation that does not leak memory.

Modularity is generally seen as a software engineering problem best left to component
model freaks. It is however critical to clearly define where the system should be modular
and more importantly where it should not to avoid creating a simulator that provides so
many abstraction layers that no one really knows anymore how and where to extend it.

Parameter configuration is one of the most common feature used in a simulation
engine: when users intend to study the behavior of one or more protocols under varying
parameter values, they want to be able to easily control precisely a large set of parameters
over a large range of values. For example, it should be easy to specify that the TCP
retransmit timeout of node Y should be 200ms and to run many simulations with different
values for that parameter to explore its impact on the behavior of the simulation.

Trace collection: of course, it would be somewhat useless to run a simulation without
collecting some information about the behavior of the protocols being studied. In some
cases, we want to simply dump in a trace file the set of packets that reach a specific point
of the protocol stack of a node. In other cases, we need to perform more complex online
processing to avoid generating gigabytes or terabytes of trace data on disk.

We explore on these requirements in the remainder of this section.

2.4.2 Memory management

For anything but the simplest simulation, allocating objects on the stack is impossible as
they are allocated in factory functions1 which return references to newly-allocated objects.
Using the heap exclusively is thus the only viable solution but it does not come cheap: as
pointed out by Yans [21] and GTNetS [15], using raw new/delete pairs in a large complex
system gives rise to many questions related to the ownership of the resulting pointers. The
central issue is that of figuring out which piece of code is allowed to delete a pointer when
more than object contains a copy of that pointer.

For a short while, we considered the use of the Boehm [1] garbage collector as the exclu-
sive means of allocating and releasing memory throughout ns-3 but we decided otherwise
for fear of making it harder to integrate other C/C++ libraries in ns-3. In the end, we set-
tled on the use of reference counting: whenever we copy a pointer, we increment a counter

1A Factory is a common software Design Pattern [12]: it refers to an object or a function which is
responsible for creating instances of a certain type of object, function, or structure.
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associated to the object it points to and whenever we destroy a pointer, we decrease the
counter. When the counter reaches zero, that is, when there are no pointers pointing to
it, the object is deleted. The counter is incremented and decremented through the pair
of functions Ref and Unref. The major advantage of using reference counting is that it
is a fairly widespread memory management technique that many developers are already
familiar with.

To avoid having to perform a local inspection of each function that copies or destroys
a pointer to ensure that it posts the matching Ref and Unref calls and thus ensure the
global correctness of the program, we encapsulate every ns-3 object pointer in a C++
smart pointer which captures every copy and destruction of the pointer to maintain a
correct reference count. The sample ns-3 smart pointer template class Ptr<T> is based
upon the strategy outlined below:

1 c l a s s Ptr {
2 pub l i c :
3 Ptr &operator = ( const Ptr &other ) {
4 i f ( m object != 0) {
5 m object−>Unref ( ) ;
6 }
7 m object = other−>m object ;
8 m object−>Ref ( ) ;
9 }

10 MyObject ∗ operator −> ( ) {
11 re turn m object ;
12 }
13 p r i v a t e :
14 MyObject ∗m object ;
15 } ;

To deal with the unavoidable reference cycles that come with a complex simulation
experiment, every ns-3 object needs to perform its cleanup in its DoDispose method rather
than its destructor. To illustrate how this mechanism works, we consider here the classic
example of two objects that hold a pointer to each other: if A holds a pointer to B and
B holds a pointer to A, their reference count will never reach zero and they will never
be deleted. To forcibly break this cycle, we rely on the user to issue at least one call to
Dispose so that if A is disposed, its pointer to B is destroyed, the reference count of B
drops to zero, B is deleted, its pointer to A is destroyed, the reference count of A drops to
zero, A is deleted.

In practice, users never need to call the Dispose methods directly as they are called
automatically by the simulation runtime at the end of the simulation. They thus merely
need to implement cleanup in DoDispose, chain up to their parent class DoDispose method,
and make sure they derive from the ns3::Object base class to get all of these features.
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2.4.3 Modularity

It is mainly our experience with ns-2 that convinced us that we needed to be really careful
to ensure that ns-3 would stay modular in the long run and that it would not become
overloaded by the numerous models integrated into it over time. Our biggest concern early
on was that of dealing with the Node class typically used to represent one of the components
of a network that contains a CPU, some memory, persistent storage, and a few network
interfaces that are connected to other nodes through simulated network links.

In ns-2, the Node class accumulated over the years a lot of cruft as every new protocol
integrated in ns-2 unconditionally added to this class its node-related data: with time,
every model in ns-2 started to use these various fields and it became quickly impossible to
remove any of them or figure out which protocol updated which fields.

To avoid reproducing this mistake, we could have chosen to use a component model
such as COM [10] or XPCOM [6] to clearly split each piece of functionality in separate
interfaces that are navigated with QueryInterface using 128-bit Universal Unique IDen-
tifiers (UUID). However, we felt that such a solution was somewhat overkill to deal with
the weak base class problem that plagued ns-2 and that it might hamper the ease of use of
ns-3 considerably. We thus chose to instead extend the ns-3 Object class with a COM-like
aggregation facility: figure 2.2 illustrates how three unrelated subclasses of this base class
can be dynamically aggregated together by a user with the AggregateObject method to
form a circular linked list of objects. Once aggregated together, a user can then navigate
from one to the other with the GetObject method which provides functionality equivalent
to the COM QueryInterface method.

++

Node

MobilityModel Ipv4

Node MobilityModel Ipv4

Node MobilityModel

Figure 2.2: Three objects are incrementally aggregated together during the experiment
setup

This simple mechanism makes it possible to dynamically attach together a Node, and
a MobilityModel to assign a spatial 3D position to that node without the node itself
ever knowing anything about the concept of a position. It is only the other models that
are located within the node and that need to access the 3D position that will be aware
of it. While this mechanism is very limited and does not provide the scope and breadth
of features found in real component systems such as COM or even in the OMNeT++
component-based framework, it has so far proven sufficient to handle all of our extensibility
needs hence allowing us to avoid the dreaded ns-2 weak base class problem.
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2.4.4 Parameter configuration

As pointed out in section 2.4.1, being able to configure easily the set of parameters provided
by each model is another very common task that simulation tools need to handle. While it
might be possible to let each model adopt its own approach, this would lead to considerable
fragmentation and would make it very hard to keep track of which parameters have been
set to which values for anything but the most trivial simulations.

In ns-2, the simulation core makes it easy to initialize C++ class member variables
from a value specified in the user Tcl simulation script but this simple mechanism does not
provide much control over the value of a parameter in individual objects. To do so, users
need to perform the set default/create/reset default dance or to obtain a reference to the
object once it has been created and explicitly modify its value.

GTNetS, Yans, and GloMoSim provide no support to facilitate this task but most other
simulators deal with this issue more extensively. The OMNeT++ component model, for
example, makes it possible to control both the default value of an attribute as well as
its value in each individual object. Although it is based on a different model which is
more hierarchical, the Scalable Simulation Framework (SSF) Domain Modeling Language
(DML) provides similar functionality.

In line with OMNeT++ and SSF DML, ns-3 provides extensive control over the at-
tributes of each object. On top of memory management and software modularity, the
Object base class is also responsible for centralizing metadata about the set of attributes
that can be introspected and modified at runtime for each kind of Object subclass. This
metadata database is used by the following ns-3 tools to solve common simulation tasks:

• CommandLine: the ns-3 command-line parsing class recognizes automatically a set
of command-line arguments that can be used to change the default value of every
attribute in every object type. For example, to set the ChecksumEnabled attribute in
the ns3::Ipv4L3Protocol object to true, we can use the --ns3::Ipv4L3Protocol::
ChecksumEnabled=true switch and thus obtain IP headers that contain a correct IP
checksum rather than the default value of zero.

• ConfigStore: this class can be used to introspect the value of all attributes in every
object and dump it in an XML or a raw text file. These files can be used as a
reference data-set for every simulation run or they can be modified and re-read by
ConfigStore to re-run a simulation with a precisely set of attribute values.

• GtkConfigStore provides a graphical front end to the same facilities and makes it
easy to discover the set of attributes available and inspect and modify their values
before running a simulation.

• The ns-3 API reference documentation is partly automatically generated to include
a list of the attributes of each object together with their default value and a brief
description of their purpose.

These features are also available directly to simulation scenario writers when they want to
control various attributes directly from their own simulation scripts:
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1 Config : : Se tDe fau l t ("ns3::DropTailQueue::MaxPackets" ,
2 Str ingValue ("80" ) ) ;
3 Config : : Set ("/NodeList/5/DeviceList/1/TxQueue/MaxPackets" ,
4 Str ingValue ("80" ) ) ;

From the perspective of a model developer, integrating parameters in this global metadata
facility is a matter of subclassing the Object base class and of defining a GetTypeId method
that registers a set of attributes for each parameter and returns a TypeId instance. For
example, to export the member variable m ackTimeout used to control the duration of the
timer that is started whenever data is sent in the StopAndWaitArqProtocol class discussed
in previous section, we could do something similar to this:

1 c l a s s StopAndWaitArqProtocol {
2 pub l i c :
3 s t a t i c TypeId GetTypeId ( void ) ;
4 p r i v a t e :
5 Time m ackTimeout ;
6 } ;
7 TypeId StopAndWaitArqProtocol : : GetTypeId ( void ) {
8 s t a t i c TypeId t i d = TypeId ("StopAndWaitArqProtocol" )
9 . SetParent<Object> ( )

10 . AddAttribute ("AckTimeout" , "Duration of the ACK timeout" ,
11 Str ingValue ("1ms" ) ,
12 MakeTimeAccessor (&StopAndWaitArqProtocol : : m ackTimeout ) ,
13 MakeTimeChecker ( ) )
14 ;
15 re turn t i d ;
16 }

2.4.5 Trace collection

Although configuring the set of parameters used by a set of models is necessary to be
able to run any simulation, we have so far ignored the more important problem of how we
can extract information from a running simulation either for online processing or offline
post-processing.

While offline post-processing is the most flexible and convenient way to extract infor-
mation from a long-running simulation when we do not know before hand how we are going
to analyze its output, it is usually impractical to keep track of every event that happens
in the simulator because this would generate trace files that are impossibly large and thus
hard to store and hard to post-process.

In certain cases, the sheer amount of information stored in a trace file can make the
analysis sufficiently complex that it is easier to filter out the data before it is written to disk
or to perform a complete online analysis during the simulation itself. In other cases, online
processing cannot be avoided: for example, to ensure that we do not stop a simulation
until it runs long enough to reach its steady state.
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In both cases, though, the simulation runtime needs to make it easy to collect the
information we want and to either process it directly or send it in a specific format to
persistent storage. In practice, though, the most common approach to this problem, print
statements, makes online analysis and trace file formatting impossible.

Print statements

When compilation and link times are sufficiently small, many users succumb the temptation
to edit the source code of the model implementations they are using: printf and/or
std::cout are simple low-tech ways to get data from the simulator to persistent storage.

While sprinkling the source code with calls to these functions is very easy to do, it
suffers from a number of downsides, some of which are obvious. First and foremost, it
rules out any form of online analysis and makes it very hard to change the format of the
trace file generated since every call site would need to be changed to adapt to a new format.
Second, the time saved when doing this for the first time is usually lost not once, but often
many times when a new version of the simulation models is released and the simulation
scripts and the printf patches must be ported to the new version of the models which
have undergone heavy changes independently.

Modifying existing models to add the needed tracing print statements has many other
downsides: it makes it harder for a simulator user to remember what has been modified and
why. Similarly, unless he uses rigorously a source code version control tool, the simulation
scripts become harder to publish since they must be bundled together with the associated
trace patches, etc.

Java-based simulators can deal with these issues with the help of Aspect Oriented
Programming (AOP) techniques [20] based on the bytecode introspection and modification
capabilities of a Java Virtual Machine (JVM) to dynamically insert calls to user-provided
functions in arbitrary locations of the models: simulation scripts are standalone and contain
descriptions of the trace hooks together with the functions invoked whenever these trace
hooks are reached. There is, however, no such solution for C and C++ systems which
provide no assembly code introspection capability and thus require ad hoc workarounds.

ns-2, GTNetS

Neither ns-2 nor GTNetS really attempt to provide a solution for online processing and
leave the users who care about this on their own.

ns-2 merely tries to (rather unsuccessfully) encapsulate the formatting component of
the trace file generation in a separate class so that multiple trace file formatters can be
connected to the trace event generators. The set of trace events as well as their arguments
are hardcoded and cannot be extended without considerable work.

GTNetS, on the other hand, does not attempt to abstract the trace file format but it
makes it easier to filter events by node id, protocol number, and packet content to minimize
the complexity and the size of the resulting trace files.
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OMNeT++

OMNeT++ stands out from its competitors by providing facilities to support both reason-
ably complex online and offline processing.

When its models use the OMNeT++ trace event reporting facility, it is possible for
users to easily specify one of a set of predefined actions as a handler for any trace event.
For example, users can specify that the mean of a specific variable be calculated during
the simulation and output at the end. While the set of predefined actions that can be
attached to each trace event covers quite a lot of use cases, it is not possible to extend the
system through new trace processing actions.

OMNeT++ also provides support for very fine-grained filtering of the data that goes
in its trace files: each individual trace event generator can be individually turned on or off.

ns-3

The fundamental tracing abstraction introduced by ns-3 is the distinction between trace
sources (models which generate trace events) and trace sinks (functions in user scripts
which need to be notified of trace events). Each model is responsible for registering in the
ns-3 Object metadata database the set of trace sources it exports. The following example
is a lstlisting copy of the metadata registration function of the ns-3 TCP implementation: it
defines a trace source named CongestionWindow which represents the underlying variable
named m cWnd.

1 TypeId
2 TcpSocketImpl : : GetTypeId ( ) {
3 s t a t i c TypeId t i d = TypeId ("ns3::TcpSocketImpl" )
4 . SetParent<TcpSocket> ( )
5 . AddTraceSource ("CongestionWindow" ,
6 "The TCP connection’s congestion window" ,
7 MakeTraceSourceAccessor (&TcpSocketImpl : : m cWnd) )
8 ;
9 re turn t i d ;

10 }

The declaration of the m cWnd variable is also straightforward:

1 c l a s s TcpSocketImpl {
2 . . .
3 TracedValue<u int32 t > m cWnd ;
4 . . .
5 } ;

At runtime, the Object base class provides sufficient introspection capabilities to detect
which trace sources each object instance supports and allows the connection of arbitrary
trace sink functions to the CongestionWindow trace source. The trace sink is then called
whenever the value of the TCP congestion window changes. It can then perform arbitrary
processing before the simulation completes. The following code sample highlights how this
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facility could be used to generate a simple trace file that contains one line for each value
set in the congestion window variable:

1 void MySink ( u i n t 3 2 t oldValue , u i n t 3 2 t newValue ) {
2 std : : cout << Simulator : : Now ( ) << " " << newValue << std : : endl ;
3 }
4 Config : : Connect . . . (
5 "/NodeList/0/$ns3::TcpL4Protocol/SocketList/0/CongestionWindow" ,
6 MakeCallback (&MySink ) ) ;

When users do not need access to these low-level trace operations, they can easily
enable the default packet-based trace file generators which collect the set of packets being
sent or received on an interface in a binary pcap file [5] or a text file.

While the ns-3 trace facility lacks some of the built-in online processing capabilities that
OMNeT++ already provides, its flexible tracing framework makes it possible to offload all
of these complex online processing responsibilities entirely to users.

2.4.6 Conclusion

Originally, ns-3 did not intend to define or use a very formal object model because we
felt that it was important to maximize flexibility for model developers so that they do
not have to redesign or rewrite entirely existing models. However, feedback from early
users as well as our own experience with implementing or porting simulation models to
ns-3 convinced us that we needed nonetheless to provide common facilities that would be
easy to use, that would make it possible to easily integrate and use together models that
were developed separately, and that would require little to no changes to the core logic of
existing models. Over time, the Object base class thus slowly and incrementally evolved
into a full-fledged framework that focuses on recording in the ns-3 metadata database the
functionality provided by each object, hence, making it easy to wrap and export existing
functionality in a way that allows users to configure, and trace every model through the
same programming interface.

However, the release early, release often development philosophy that we adopted means
that there is still ongoing work to extend the Object class and its associated metadata
database:

• The tracing mechanism needs to be extended to provide built-in support for typical
online processing algorithms (calculating the mean, variance, etc.) and we intend
to extend the metadata database to record for each numerical trace source extra
information that describes the default processing that should be applied to the trace
source.

• The attribute configuration system needs to be extended to support more transpar-
ently arrays and structures.

• The metadata database needs to be extended to record information about which
objects can be connected together and which methods need to be invoked to connect
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them so that it becomes possible to both serialize and de-serialize to/from persistent
storage the complete description of an experiment: external simulation tools that
provide very high-level abstract descriptions of an experiment could then generate
one of these experiment description file rather than generate C++ or Python code.

• A generic Graphical User Interface could be built on top of the connection metadata
database described above to make it possible to interactively construct a simulation
scenario by droping object boxes on a canvas and connecting them together.

2.5 Network models

In section 2.3.2, we touched briefly upon how a typical network protocol could be im-
plemented in a network-oriented event-driven simulator. However, the models that are
present in ns-3 cover many more layers of the protocol stack: the most current version of
ns-3 sports a complete IPv4, Address Resolution Protocol (ARP), User Datagram Protocol
(UDP), and TCP stack. It integrates real-world stacks such as the Linux and BSD network
stacks through Network Simulation Craddle (NSC) [18]. ns-3 contains a few simple mod-
els to generate and collect traffic but more importantly provides many MAC and Physical
(PHY) layers. The oldest such model is a detailed IEEE 802.11 implementation ported over
from Yans [21] that features both infrastructure and ad hoc mode, multiple rate control
algorithms, interference and propagation loss models, many classic mobility models such
as random walk, random direction, etc. More recent additions include a Wimax [13, 17]
model, a model of underwater communication systems, and a spectrum-aware channel and
PHY modeling framework [8]. The routing layer includes a nix-routing [24] module ported
from GTNetS, OLSR [4] ported from ns-2, and AODV [23].

While there would be little point in discussing here the details of how each of these
models work and how they can be used, we focus instead in this section on a high-level
outline of the ns-3 core network models to illustrate how ns-3 can be extended and where
new models can be easily plugged in.

2.5.1 ns-2

During the nineties, when ns-2 was first released, its developers were mostly interested in
studying the behavior of TCP over internet-style wired links that can be approximated with
relatively simple queues and delay/throughput/jitter models. Consequently, ns-2 defines
only high-level abstractions of the network: a Node contains solely a 32bit nodeid that is
used as source and destination address of every packet. Nodes are interconnected by a chain
of Connector objects, each of which performs some processing on its incoming packets
before forwarding them to the incoming port of its outgoing connector. For example,
to model a simple wired link that interconnects two applications on two nodes, one might
assemble the topology shown in figure 2.3: each box except for the Node boxes is a subclass
of the Connector base class.
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Figure 2.3: An ns-2 Network topology

This simple structure served its purpose really well but when more complex link-level
models were introduced to simulate wireless and satellite links, the lack of more explicit
interfaces between each layer lead to major incompatibilities between these models as
each separate developer relied on different assumptions about the way the system was
assembled. For example, this lead to complex workarounds to enable simulation scenarios
that use wired, wireless, and satellite models together to ensure that packet routing would
work across network boundaries.

2.5.2 OMNeT++

The component model that is used in OMNeT++ is very similar to the ns-2 Connector

mechanism: each cComponent exports a set of input and output cGates. The output gates
can be connected to the input gates of other components through cChannels which allow
arbitrary cMessage objects to be exchanged between the cComponents they connect. To
communicate between two modules, one needs to create a message of the right kind and
send it on an output gate assuming that the module that is connected on the other side
of the output gate knows how to handle the incoming message. In practice, though, some
of the components that make up a simulation (for example, the per-host InterfaceTable
component that maintains the list of network interfaces that exist within a node) do not
define any input or output gates: the other components that are present in the simulation
access them directly through function calls without sending messages.

While this architecture is very convenient to enable distributed simulations because the
simulation runtime has explicit information about the set of objects that can send messages
to each other and the delays that each connection applies on these messages, it can be
sometimes hard to understand how to connect existing components together and how to
replace some of them with new implementations that provide new functionality. The issue
here is that there is no mention in the component definition of the set of messages that the
component is committed to handle: the message types are usually defined separately and
it takes quite a bit of experience to understand exactly which messages a given component
can receive or send and the semantics associated with these messages.
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2.5.3 GTNetS

To avoid the lack of a clear contract introduced by an abstract simulation model such
as the ns-2 model or the OMNeT++ component model, GTNetS focuses on providing a
much more explicit separation between each protocol layer. It thus defines the L2Protocol,
L3Protocol, and L4Protocol classes that specify how packets can be sent up and down
the protocol stack across each layer and that must be subclassed to add new compatible
protocols. More importantly, though, GTNetS also defines the Interface base class that
abstracts a typical network card under a common interface that is used by the higher IP
and ARP layers.

2.5.4 ns-3

The modeling philosophy that was chosen by ns-3 is very close to the GTNetS abstractions
and proceeds from a number of considerations on how real-world network stacks are built.

In the real world, only two major protocol interface abstractions are in wide use: the
most obvious one is the socket programming interface that defines how user space appli-
cations can send and receive traffic over layer 2, 3, or 4 protocols. The second abstraction
is less widely seen by application developers but crucially important for network simula-
tors: it is the kernel-level interface that defines how the layer 3 protocols and the network
cards present in the host communicate. This abstraction is defined by the very similar
net device and ifnet data structures on Linux and BSD respectively.

For efficiency and performance reasons, the other protocol interfaces have not yet con-
verged to a simple set of common features. For example, the interface between the UDP
and the IP layer exposes a lot of details of the IP layer to optimize the case where IP
datagrams need to be fragmented to make sure that the UDP layer does not allocate a big
buffer to hold the user datagram only to create later a set of smaller fragments in the IP
layer.

ns-3 adopts a similar structure: most inter-layer interfaces except for the socket and
net device abstractions are left unspecified to leave as much flexibility as possible to
model developers, yet make it easy to inter operate with protocol implementations that
expect a socket or a net device interference to be present.

• The NetDevice class is based on the Linux kernel-level net device data structure:
it represents a single hardware device and allows the upper layers to queue packets
for transmission by the hardware and makes it possible for the hardware device to
notify the upper layers that a new packet has been received.

• Channels interconnect NetDevices: each Channel object contains the list of NetDevice
objects it is connected to. It represents a network cable, a wireless transmission
medium, or a fiber cable.

• The Node class matches the GTNetS concept of a host system. A Node contains a
list of NetDevice and Application objects
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• The Socket class represents a communication endpoint that can be created by ap-
plications and that are used to send and receive traffic to the protocol stacks that
are attached to a node.

• The SocketFactory class can be used to create sockets of various kinds by applica-
tions: each protocol that is attached (aggregated) to a node needs to also aggregate
a new type of SocketFactory to the node so that applications interested in sending
or receiving traffic over this new protocol can request this socket factory and create
sockets from it.

Figure 2.4 summarizes the relationship between these objects and illustrates how a
simple network simulation could be put together to simulate a single link interconnecting
a node that sends traffic with a node that receives it.

NodeUdpSocketFactory

OnOffApplication

CsmaNetDevice

CsmaChannel

UdpSocket

Node UdpSocketFactory

PacketSink UdpSocket

CsmaNetDevice

Figure 2.4: An ns-3 Network topology

2.6 Conclusion

In this chapter, we discussed the goals that led us to design a new network simulator and
outlined how these goals shaped the subsequent management and technical development
of ns-3.

Rather than build ns-3 within a small research team, we have adopted a GPL license
with an open development process to ensure that a healthy and active contributor commu-
nity takes over the maintenance burden from the original ns-3 developers when they move
on to other projects.

Our concerns about ease of use and robustness led us to adopt C++ templates and 128-
bit integer arithmetic within our time management facility while our need for a high degree
of model realism drove the design of the ns-3 network models towards an architecture that
is very close to the architecture of a real-world UNIX system.

In the following chapters, we build upon the foundations presented here to demonstrate
how ns-3 can be used to bridge the gap between traditional network simulations and
field experiments. In chapter 3, we first focus on the design and implementation of the
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critical component needed to allow realtime ns-3 simulations to interact transparently and
efficiently with the real world. Then, in chapter 4, we detail the construction of a simulation
environment that can directly execute both user space and kernel space network protocol
implementations.
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While a great deal of time was invested in the design and the implementation of the
ns-3 simulation core, even more effort was invested in the ns-3 network-specific models to
fulfill our long-term goal of building a simulation platform which can be used to easily
switch back and forth between simulations, testbeds, and field experiments.

In this chapter, we consider how our focus to support natively transparent emulation
and real code execution shaped the design and the implementation of the ns-3 simulation
packets. We first discuss in 3.1 the requirements we set out to deal with. We then outline
in 3.3 the implementation solutions chosen in other simulators and summarize in 3.4 the set
of usage patterns we gathered from these existing simulators to guide our implementation.
3.5 describes the details of the implementation we eventually came up with and 3.6 shows
the performance impact of these choices on typical simulation scenarios.

3.1 Requirements

When the ns-3 project started, the design of simulation packets spurred many heated and
contentious discussions: the reason for this became clear only later but it should have been
obvious that the list of requirements we wanted to fulfill was daunting. First and foremost,
we needed a number of important features:

• Support fragmentation and reassembly: both the IP and the MAC layers often
perform these operations and they have a major impact on the behavior and per-
formance of network protocols but many simulators do not provide any support for
them.

• Transparent real bytes: emulation, real-world code integration in the simulator
but also the generation of PCAP [2] trace files require simulation packets to be con-
verted back and forth into real network packets with their native byte encoding.
Ideally, this conversion should be fully automatic and transparent to model develop-
ers.

• Simulation data: it is very common to store extra simulation-only information in
some simulated packets to simplify the implementation of some protocol models or
to make it easy to test a new idea. For example, to measure the one-way link delay,
we can store in a packet the time at which it is sent, and calculate in the receiver the
difference between the current receiving time and the send time stored in the packet.

• Pretty printing: for debugging or tracing purposes, it is very convenient to be able
to generate automatically a human-readable textual representation of the payload
and the protocol headers and trailers of a packet.

We also wanted to make sure that the resulting system would be highly efficient both
CPU-wise and memory-wise because we knew from experience that the performance of a
network simulator critically depends on its ability to perform per-packet processing:
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• Memory efficiency: when users don’t care about the exact content of the application-
level payload, it should be possible to solely keep track of its size without allocating
the corresponding memory. The simulation of protocols such as high-speed TCP
over high-bandwidth links is a typical use-case where this optimization is necessary
to avoid saturating the memory of the simulation host.

• Runtime efficiency: it is critical that packet management does not become a CPU
bottleneck to avoid slowing down every simulation.

Finally, we cared about the overall soundness of our programming interfaces: the long-term
success of the simulator depends on its performance but also more importantly on a robust
programming interface:

• Extensibility: it should be possible to add new types of packet headers or footers
without having to modify a shared header so that users who extend the simulator
with new network models don’t have to go through painful merge sessions to make
their models work together.

• Memory management: it should be easy to manage packets and to make sure
that they get destroyed when they are not needed. Simulations make this problem
especially acute because a single packet can be shared by many different protocol
layers within a single or multiple network nodes.

• Hard-to-abuse programming interface: the need to provide a very efficient data
structure should be balanced against the need to ensure that the resulting program-
ming interface is both easy to use and hard to abuse. Efficient implementations often
leak out implementation details to their users by using optimized non-transparent
memory management rules or awkward programming interfaces.

3.2 Definitions

To avoid ambiguity in the following sections, we define here the primitive data structures
used throughput this chapter and then the operations which manipulate them.

Data structures

Header or Footer: the fields of this data structure describe the content of a message that
is being sent or received by a specific protocol. Each protocol specifies the semantics and
the encoding that must be used to serialize these fields in a stream of bytes before sending
them over a network. There is no difference between a header and a footer except for their
position in the stream of bytes. In the rest of this chapter, we ignore footers.
Packet: an object which contains an ordered list of protocol headers that will be sent from
first to last on a network.
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Operations

AddHeader is a common operation that is performed on a packet to insert a new protocol
header at the head of the list of protocol headers.
RemoveHeader removes and returns the protocol header that is located at the head of
the list of protocol headers.
PeekHeader: returns but does not remove the protocol header that is located at the head
of the list of protocol headers.

3.3 Related work

The seemingly infinite list of requirements we set out to tackle did discourage us initially
because there was no obvious way to chose which requirement we should attempt to address
first. Luckily, there was a lot of material to learn from in the form of existing implemen-
tations in other simulators. We thus selected a few well known as well as other less well
known simulators and proceeded to analyze how their packet facility is designed.

3.3.1 ns-2

The Packet data structure implemented in ns-2 [1] is an un-ordered aggregate of protocol
headers: it contains a single byte buffer where only one header instance of each registered
header type can be stored. Figure 3.1 illustrates the memory layout of this class when only
a few types of headers are registered. The headers actually used are shown in light gray.

packet
TCP IP UDPARPWifiEthernetCommon

Figure 3.1: An ns2 packet

By default, the set of registered header types is equal to the list of all existing header
types which makes ns-2 packets use and waste considerable amounts of memory as each
packet instance uses only a very small subset of the total set of registered headers. It
is possible to minimize this per-packet memory overhead by specifying a smaller list of
registered headers, but very few users know about this functionality or make use of it.

The Common protocol header is a mandatory header which is always present in ns-
2 packets. It contains information on the type of the last protocol header added to the
packet, the total size of the packet, an integer used to uniquely identify each packet instance,
on-the-side information for various routing protocols, but also a lot of very random and
dubious fields added over the years.

Printing the content of a Packet is left to external tracing classes which are responsible
for printing the content of the last protocol header added to the packet (as indicated by
the common header’s type).
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Adding a new protocol header is a matter of allocating a protocol header type by adding
an entry to the packet t enum, registering the protocol header with the Tcl function
add-packet-header, adding a C++ macro definition HDR PROT, and, adding printing code
to the tracing classes to handle the newly allocated header type.

This approach suffers from several weaknesses:

• Every new protocol header must be declared in the shared packet.h source file
header and the shared tracing classes must be independently modified to include
the appropriate pretty-printing code. This systematically introduces software merge
problems when the time comes to use together two models designed and implemented
separately.

• It is not possible to store two instances of the same type of header in the same packet
which makes models such as IP over IP very hard to implement.

• There is no support for fragmentation and reassembly: fragmentation must be imple-
mented by every user by creating a new fragment packet which holds a reference to
the original packet and reassembly must get back the original un-fragmented packet.

• There is no way to know the type of and to pretty-print the headers actually present
and used in a packet beyond the last header that was added to it.

• Emulation and pcap trace file generation, which both need to convert these simulation
packets into real network packets, require an external conversion function which
knows precisely the set of headers present in a packet and which knows how to map
them back and forth to real network packets. This conversion function must be coded
by hand for each combination of the protocol headers that are expected to be found
in the packet.

• Packet ownership must be carefully managed to avoid memory leaks, or, worse, double
frees.

3.3.2 GTNetS

GTNetS [3] packets represent a considerable improvement over ns-2 packets: each protocol
header is represented as a subclass of the PDU1 base class and must provide serialization and
de-serialization methods. These methods are used during parallel simulations to convert
simulation packets to and from simulation messages between computing nodes.

PDUs can be pushed in and popped out of Packet instances through their PushPDU and
PopPDU methods. When a PDU is pushed, the packet takes ownership of the PDU and
never releases it. When a PDU is popped, the packet returns a pointer to the PDU stored

1This class name reuses the acronym PDU which stands for Protocol Data Unit. Note that this use of
the term PDU to refer to a protocol header data only is not compatible with the widely-accepted definition
of this term in telecommunication systems where it usually refers to a protocol header and the associated
payload.
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internally. This means that its users do not need to free the PDUs returned by a call to
Packet::PopPDU. The stack of PDU instance pointers is shown in figure 3.2: this diagram
also shows how GTNetS is careful to reserve sufficient room in its buffer of pointers to
avoid costly buffer resizes during push in most cases.

packet

PayloadIP UDP

Top of stack

Figure 3.2: A GTNetS packet

This design solves many of the problems identified in the previous section:

• It is very easy to add, completely independently from anyone else, a new type of PDU
into a packet by creating a subclass of the PDU base class. The packet itself does not
require any modification to handle that new type of PDU.

• It can also easily perform double encapsulations such as IP over IP

• The content of each packet can be entirely printed for debugging or tracing purposes
with the DBPrint method which loops through the PDU stack to invoke the Trace

method on each PDU.

However, a number of issues are still unresolved: there is still no provision for fragmen-
tation. Ownership management requires the use of new and delete which makes it hard
to keep track of which piece of code is responsible for deleting a packet created somewhere
else. There is also no support for conversion to and from real-world network packets. Fur-
thermore, while this implementation achieves excellent performance (see 3.6), it does so by
providing a programming interface that is inherently fragile. For example, PopPdu returns
a pointer to a PDU instance whose lifetime is managed by the packet class: users have no
way to know how long the pointer they obtained will remain valid which can lead to very
hard to debug memory corruptions and crashes.

3.3.3 OMNeT++

OMNeT++ [5] packets are very similar to GTNetS packets which means that they share
both their strengths and their weaknesses. Each protocol header is modeled as a subclass
of the cPacket base class: it contains a pointer to the packet it encapsulates, hence forming



3.3. RELATED WORK 49

a singly-linked list of encapsulating packets. This singly-linked list shown in figure 3.3 is
logically equivalent to the GTNetS stack of PDUs.

PayloadIP UDP

Figure 3.3: An OMNeT++ packet

The programming interface offered by these OMNeT++ packets avoids the subtle pit-
falls in which the GTNetS implementation fell: although the cPacket class still transfers
pointer ownership across its public functions, they do not imply the ambiguous lifetimes
offered by the GTNetS PopPDU and PushPDU methods. Furthermore, the memory man-
agement of these packets is more coherent and although it does not completely automate
everything, the OMNeT++ component system alleviates a lot of the manual labor needed
to manage packets and their headers.

One should also note that the dup method that creates a logical deep copy of a packet
implements in fact a form of Copy-On-Access that avoids a lot of header copies. Figure 3.4
illustrates the behavior of this mechanism: when the original packet is duped, OMNeT++
creates a new IP2 header that shares the UDP1 header and it’s only if and when the
user attempts to call the decapsulate function to separate UDP1 from IP2 that UDP2 is
unshared from UDP1 on the fly.

PayloadIP1 UDP1
dup

Payload

IP1

UDP1

IP2
decapsulate

Payload

IP1 UDP1

IP2 UDP2

Figure 3.4: dup shares headers. decapsulate unshares them.

3.3.4 Yans

The approach chosen in Yans [4] is radically different from the other implementations
considered until now. Its first concern is to make sure that its programming interface is as
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robust as possible: it thus avoids transferring pointer ownership across its public methods.
For example, to extract a header from a packet, GTNetS does something like this:

1 Packet ∗p = . . . ;
2 IPV4Header ∗ ipv4 = new IPV4Header ( ) ;
3 p−>PushPDU ( ipv4 ) ;
4 ipv4 = p−>PopPDU ( ) ;

which transfers ownership of the pointer from the caller to the callee in the PushPDU

method. This memory management policy requires that a user who creates the header
must remember to never delete it once it is pushed in a packet to avoid the memory
corruption triggered by a double-free. The OMNeT++ encapsulate and decapsulate

methods are similar in design and suffer from a similar problem.
Yans, on the other hand, uses the following pseudo-code which copies the header data

structures back and forth between the caller and the callee to make sure that there is no
ambiguity about the ownership of this object: whoever creates it must also delete it.

1 Packet ∗p = . . . ;
2 Ipv4Header ipv4 ;
3 p−>AddHeader (&ipv4 ) ;
4 p−>RemoveHeader (&ipv4 ) ;

Another common source of packet memory management problems comes from the fact
that packets are always passed around by pointer for efficiency reasons: it is easy for
multiple pieces of code located in different models to hold a pointer to the same underlying
packet. Consequently, it is hard for these models to figure out which of them is allowed to
delete the packet and more importantly when it is allowed to do so.

GTNetS provides no special facility to deal with this problem which might be fine when
a simulator is developed by a small group of tightly knit people but which is unlikely to scale
to a large system built by independent developers. OMNeT++ alleviates these problems
by automatically keeping track of the ownership of each packet through its component
system. To save its users from having to coerce their model implementations within the
constraints inherent to a component model such as the one used by OMNeT++, Yans uses
a simpler PacketPtr reference-counting smart pointer to automatically allow packets to
be deleted when no one references them anymore.

In Yans, protocol headers are represented by subclasses of the base class Chunk. Each
such subclass must implement three methods: add to, peek from and remove from. add to

is expected to reserve enough space in the packet byte buffer and to serialize its data into
the reserved space. peek from must de-serialize its data from the packet byte buffer, and
remove from is expected to trim the reserved space from the byte buffer.

The byte buffer is represented by an instance of the Buffer class which is inspired by
the BSD/Linux mbuf/skb data structures. To avoid repeated memory re-allocations due to
insertions at the head or the tail of the buffer, all three programming interfaces manipulate
a byte buffer initially created sufficiently big to hold all of the protocol headers expected
to be inserted before the packet is finalized. Furthermore, to avoid having to move around
memory in their protocol buffer, they also start writing protocol headers in the middle
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of this byte buffer. Figure 3.5 shows what this data structure looks like in memory after
inserting a UDP header in front of the application payload: there is still room in front of
the buffer to insert the missing IP and Ethernet headers.

PayloadUDPPacket

Figure 3.5: The Yans protocol byte buffer

The major difference between the Yans implementation and the Linux and BSD imple-
mentations is that, usually, the kernel hardcodes the magic numbers used to reserve enough
space at the start of the buffer when it is created. Yans, on the other hand, dynamically
adjusts the initial space of each new buffer created based on the past total number of buffer
resizes and memory moves it needs to perform while running the simulation.

The serialized representation of each header in the protocol byte buffer must be the
exact network representation of the header. The in-memory representation of a packet
becomes a buffer of bytes which contains a real network packet: simulation packets are
nothing but nice shiny wrappers around network packets.

Yans packets also provide a way to attach arbitrary on-the-side information to each
packet through subclasses of the abstract base class Tag: this facility compensates for
the fact that if the chunks have to serialize and de-serialize only their exact network
representation, there is no way to store simulation-specific information in each packet.

Contrasting with the other options considered so far, this design makes it trivial to
support packet fragmentation, reassembly, and re-packetization since a simulation frag-
ment maps naturally to a network fragment. The Packet::copy (start, end) method
can create fragments and they can be concatenated with the Packet::add at start and
Packet::add at end methods. Emulation and pcap trace file generation similarly become
completely transparent.

Finally, one should note that while this approach solves some problems, it also suffers
from numerous drawbacks. For example, it offers no way to pretty-print automatically
the content of a packet, its memory footprint is very high since it always includes the
application-level payload, even when its content does not matter, and it is not very efficient
CPU-wise.

3.3.5 GloMoSim

GloMoSim [6] packets use an approach similar to Yans’. The protocol byte buffer is allo-
cated initially big enough to hold all the payload and headers which are later copied in it.
This allows GloMoSim to later avoid a costly buffer resize through reallocation and copy.
GloMoSim also assumes that the size of each header in the protocol byte buffer matches the
size of the protocol header being simulated. For example, 1000 bytes of application-level
payload are represented by reserving 1000 bytes in the protocol byte buffer. While the
main reason why this was done in Yans was to support transparent emulation, it is not
obvious why this was done here. Transparent emulation might have been a good reason
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but the content of the simulated protocol headers does not always match the content of
the real protocol header. Simplicity of implementation might be the actual reason for this
buffer allocation strategy since a unified approach to handling both application payload
and protocol headers considerably decreases the complexity of the system.

Packet PayloadUDPIP

Figure 3.6: A GlomoSim protocol byte buffer

The similarity between the Yans and the GloMoSim implementations implies that they
share the same weaknesses: GloMoSim provides no way to automatically pretty-print the
content of a packet for debugging purposes and suffers from an inefficient memory footprint
when the content of an application payload does not matter but still needs to be allocated.

3.3.6 Summary

Table 3.1 provides a synthetic overview of the set of features discussed in this section
and estimates the complexity of the underlying implementations by reporting their size in
Kilo Lines of Code (KLOC). While the size of their implementations are all within the
same range, this table highlights how their different implementation decisions lead to very
different feature sets.

On the one hand, we can see that GTNetS and OMNeT++ which implement their
packet facility with a list of protocol headers both support automatic pretty printing, but
do not know how to transparently convert their simulation packets to and from network
byte buffers and do not provide any simple way to fragment and re-assemble packets.

On the other hand, Yans and GloMoSim store their protocol headers in a buffer of
bytes which makes it hard for them to provide a pretty-printing facility but allows them to
easily support network byte buffers transparently and to export their functionality through
a robust programming interface that does not transfer ownership of pointers between the
caller and the callee.

While these two implementation choices might seem exclusive, the ns-3 implementation
demonstrates in later sections that it is possible to reconcile them and to obtain a feature
set that is the union of the feature sets of these two approaches but that doing so results
in considerably higher implementation complexity.

3.4 Usage patterns

The first prototypes of the ns-3 packet facility were implemented without much formal
thinking, but we eventually had to gather a set of reference usage patterns against which
we could judge our implementation. In this section, we present a number of usage patterns
of packet header encapsulation and de-capsulation which we identified through reviews of
models in other network simulators. The pseudo-code that we present here is always based
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GTNetS OMNeT++ Yans GloMoSim ns-2

Code size (KLOCs) 1.4 1.6 1 0.8 0.9
Pretty-printing X X
Transparent real bytes X X
Fragmentation X
Reassembly X
Memory efficiency X X
Extensibility X X X X
Robust API X X
Simulation data X X X X

Table 3.1: Features found in existing simulator packet implementations

on UDP and IPv4 for simplicity but the names UDP and IPv4 could be easily changed to
others with no loss of generality. For example, the reception pattern presented below still
applies if IPv4 is replaced by an IEEE 802.11 MAC layer.

3.4.1 Packet reception

The simplest usage pattern we identified immediately is that of packet reception. When a
packet is received within a layer of the network stack, its headers or footers are peeled away
and the packet is then forwarded up the stack if needed. The most typical use-case involves
one layer forwarding the packet to only one receiver at the upper layer but there are still
many cases where there could be more than one receiver at the upper layer. Examples of
the former are plentiful: it includes the IP layer sending a packet up to the transport layer,
the IEEE 802.11 MAC layer sending a packet up to the network layer, etc.

The cases where there are multiple receivers at the higher layer are less common but
they do exist: the UDP layer could be forwarding up the same multicast packet to to a set
of multicast applications which have joined the same multicast group but it could also be
the case that the IP layer is sending a packet up to the transport layer and a special trace
hook.

In general, the common theme in this case is that the byte buffer of a packet is never
written into: each layer incrementally parses the packet without touching its content and
forgets about the packet as soon as it has been forwarded to the upper layers. This is
usually implemented as follows:

1 void Receive ( Packet ∗packet )
2 {
3 Ipv4Header ipv4 ;
4 packet−>RemoveHeader ( ipv4 ) ;
5 f o r ( u i n t 3 2 t i = 0 ; i < m rece i v e r s . s i z e ( ) ; i++)
6 {
7 m rece i v e r s [ i ]−>Receive ( packet ) ;
8 }
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9 }

This code relies on a number of assumptions about the receiving functions:

• If they merely want to look at the next header, they will use the PeekHeader operation
to make sure that they do not modify the current parsing state of the packet as seen
by the other receiver functions.

• If they need to do more work than just look at the next header, they will first Copy

the packet to make sure that they do not modify the current parsing state of the
packet as seen by the other receiver functions, and then only remove the next header
or perform other state-modifying operations.

3.4.2 Packet forwarding

Packet forwarding always starts with a reception but one layer in the stack decides that
it needs to re-send the same packet to another node in the network. The classic example
here is an IP router but Multi Protocol Label Switching (MPLS) forwarders have the
same behavior. In general, forwarding happens when no other layer in a network node
is interested in the packet which is why naive implementations usually modify in place
the packet received before sending it down the stack. However, it is also pretty common
for some tracing layers to receive every packet, independently of what is going to happen
to this packet and it is hard to predict the relative order in which these tracing and
forwarding hooks are called. A more robust implementation thus performs a packet copy
before sending the packet back down the stack so that other potential receivers of this
packet within the node are not affected by what happens in this function.

1 void Receive ( Packet ∗packet )
2 {
3 Ipv4Header ipv4 ;
4 packet−>RemoveHeader ( ipv4 ) ;
5 . . .
6 Packet ∗copy = packet−>Copy ( ) ;
7 copy−>AddHeader ( ipv4 ) ;
8 Send ( copy ) ;
9 }

3.4.3 Packet transmission over a broadcast medium

The MAC layer which is responsible for sending packets over a broadcast medium can
generally send unicast as well as multicast and broadcast messages on its transmission
medium. When this transmission medium is a broadcast medium (for example, it is a
radio medium), every receiver within reception range must de-capsulate the MAC header
to test the header’s destination address and figure out whether or not the node is expected
to receive the packet. This is usually implemented as follows:
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1 void Send ( Packet ∗packet , Address des t )
2 {
3 MacHeader mac ;
4 mac . Se tDes t ina t i on ( dest ) ;
5 packet−>AddHeader (mac ) ;
6 f o r ( u i n t 3 2 t i = 0 ; i < m devices . s i z e ( ) ; i++)
7 {
8 i f ( m devices [ i ] == t h i s )
9 cont inue ;

10 m devices−>Receive ( packet−>Copy ( ) ) ;
11 }
12 }
13 void Receive ( Packet ∗packet )
14 {
15 MacHeader mac ;
16 packet−>RemoveHeader (mac ) ;
17 i f (mac . GetDest inat ion ( ) == m s e l f )
18 . . .
19 }

One interesting thing to note here is that in this case, every simulator we looked at hands
over a copy of the packet to the receive function of each receiver rather than rely on them
to make the copy themselves if needed. While this might be seen as a missed optimization
opportunity, we view this instead as a common realization that optimizations that rely on
a callee to play by the rules dictated by the caller without any way to check automatically
that these rules are obeyed is inherently a bad idea.

3.4.4 Packet retransmissions

Packet transmissions which do not involve a retransmission are straightforward: they usu-
ally insert the right header in the packet with AddHeader and then send the packet down
the stack. When a retransmission is needed, typically because an acknowledgment message
was not received, the picture becomes more complex. For example, when the TCP layer
sends a packet down the IP stack for the first time, it needs to keep a reference to the
packet in case it needs to be retransmitted later and this forces the TCP layer to create a
copy of the packet before sending it down the stack:

1 void TcpSend ( void )
2 {
3 Packet ∗packet = m txBuffer . f r o n t ( ) ;
4 Packet ∗copy = packet−>Copy ( ) ;
5 TcpHeader tcp ;
6 copy−>AddHeader ( tcp ) ;
7 m ipv4−>Send ( copy ) ;
8 }
9 void AckReceived ( void )
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10 {
11 Packet ∗packet = m txBuffer . pop f ront ( ) ;
12 d e l e t e packet ;
13 }

3.4.5 Summary

The detailed analysis of how simulation models use the packet programming interface in
other simulators leads to one major observation: there is a strong tension between trying
to optimize the performance of a model by minimizing the number of packet copies and
trying to maximize the ease of understanding the models by increasing the number of
packet copies to minimize dependencies between unrelated functions. In the next section,
we make use of this to focus our optimization strategy on minimizing the cost of packet
copies to be able to use them liberally and thus maximize the readability and ease of
maintenance of the ns-3 network models.

3.5 Implementation

When the time came to design and implement the ns-3 simulation packet facility, it be-
came obvious that one of the requirements discussed in 3.1 constrained considerably the
solutions we could adopt: fully transparent support for emulation requires functionality to
automatically convert real network packets into simulation packets and vice versa.

When simulation packets are based on an approach similar to the GTNetS, or OM-
NeT++ facilities, converting simulation packets to network packets is usually trivial to
automate because there is enough information in the simulator to generically iterate the
headers and footers present in a packet and to invoke a per-header function to convert the
simulation data structure into network bytes.

The converse operation, though, is much less trivial because it requires parsing the
network packet to reconstruct the set of simulation headers. While it’s easy to delegate
the conversion from network bytes to simulation data structures for each simulation header
once they are created, creating the right simulation headers in the first place is much harder.
This problem is well known to software programmers who need to implement serialization
and de-serialization functionality and the solution is also well known: the serialized stream
must contain in front of each item a type identifier which can be used to instantiate the
right object when de-serializing the stream. In this case, though, the format of network
packets is not uniform: this makes it impossible to use a fully automatic and uniform
serialization and de-serialization solution.

The only approach that makes it possible to really automate the conversion back and
forth is to adopt in simulation the normal network representation of a packet so that
the conversion back and forth is a matter of copying the entire buffer and waiting for
the simulation models to read the right headers and footers in the right order. The ns-3
Packet design thus started from the Yans codebase to benefit from its robust API, its
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memory management scheme based on smart pointers, and its protocol byte buffer stored
as network bytes. We altered it to address its many shortcomings: poor CPU performance,
abysmal memory usage, and missing automatic pretty-printing of packets.

3.5.1 The zero area

The first issue the ns-3 implementation dealt with was the addition of an optional zero
area for the application-level payload thus called because it is assumed to be filled with
zero bytes. Figure 3.7 shows the dramatic decrease in the size of the protocol byte buffer
achieved by keeping track of the size of this zero area rather than allocating space for it:
the zero area is colored in light grey to denote the fact that it is virtual and no memory is
allocated to represent it.

Zero Payload Area

UDP

Figure 3.7: The ns-3 byte buffer with a zero area.

Although initially implemented solely because of concerns about the memory usage of
an ns-3 packet, this memory optimization also turned out to be of considerable interest
from a CPU usage perspective. The size of the protocol buffer is minimized which leads
to a decreased cost for Copy operations because there is less data to copy.

3.5.2 Simple Copy-On-Write

The second objective of the ns-3 implementation was to further improve the CPU and
memory efficiency of this class in the common use-cases identified in 3.4 by introducing
Copy-On-Write (COW) techniques to make packet copy operations as cheap as possible.

The idea behind COW is to implement the Packet::Copy function by returning a new
reference to the same object, and to defer the real deep copy of the object to the point
where two unrelated users of the same object pointer attempt to modify the shared buffer.
Before performing an operation which could potentially change the state seen by another
user of the object, we start a deep copy to un-share the shared state and then only complete
the requested operation.

This optimization, however, can be a win only when state-changing operations are as
rare as possible. The first step to implement COW efficiently thus involves identifying
packet state with read-mostly accesses and then separating it from state that is more
write-oriented. In the case of a protocol byte buffer, the usage patterns described in 3.4 all
point clearly in the same direction: the underlying protocol byte buffer is never modified
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during receive operations while the current parsing state undergoes constant modifications
on both the transmission and reception paths. This leads to a packet data structure such
as:

1 c l a s s Packet
2 {
3 p r i v a t e :
4 s t r u c t SharedData
5 {
6 u i n t 3 2 t count ;
7 u i n t 3 2 t s i z e ;
8 u i n t 8 t ∗ b u f f e r ;
9 } ∗m data ;

10 u i n t 3 2 t m current ;
11 } ;

with a Copy function now responsible for merely increasing the reference count of the
shared read-mostly data instead of copying it:

1 Packet ∗Packet : : Copy ( void ) const
2 {
3 m data−>count++;
4 Packet ∗copy = new Packet ( ) ;
5 copy−>m current = m current ;
6 copy−>m data = m data ;
7 re turn copy ;
8 }

The RemoveHeader function is safe since it does not modify any shared state:

1 void Packet : : RemoveHeader ( Header &header ) ;
2 {
3 header . D e s e r i a l i z e (&m data−>b u f f e r [ m current ] ) ;
4 m current += header . GetSize ( ) ;
5 }

while the AddHeader function which writes in the shared buffer a new header needs to be
modified to check for the shared state, un-share the shared data structure if needed and
then insert the header at the front of the buffer

1 void Packet : : AddHeader ( const Header &header )
2 {
3 i f ( I sShared ( ) )
4 Unshare ( )
5 m current −= header . GetSize ( ) ;
6 header . S e r i a l i z e (&m data−>b u f f e r [ m current ] ) ;
7 }

The Unshare function decrements the shared reference count and creates a deep copy of
the shared data structure:
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1 void Packet : : Unshare ( void )
2 {
3 m data−>count−−;
4 s t r u c t SharedData ∗copy = new SharedData ( ) ;
5 copy−>count = 1 ;
6 copy−>s i z e = m data−>s i z e ;
7 copy−>b u f f e r = new u i n t 8 t [ ] ( copy−>s i z e ) ;
8 memcpy ( copy−>bu f f e r , m data−>bu f f e r , copy−>s i z e )
9 m data = copy ;

10 }

Finally, the traditional test for sharedness is whether or not the reference count is strictly
bigger than one:

1 bool Packet : : I sShared ( void ) const
2 {
3 re turn m data−>count > 1 ;
4 }

This data structure then makes it possible to implement a very efficient receive path because
the RemoveHeader function never modifies the shared state and thus never triggers any full
deep copy of the data buffer. The following pseudo code becomes both safe and highly-
efficient:

1 void Receive ( Packet ∗packet )
2 {
3 Ipv4Header ipv4 ;
4 packet−>RemoveHeader ( ipv4 ) ;
5 f o r ( u i n t 3 2 t i = 0 ; i < m rece i v e r s . s i z e ( ) ; i++)
6 {
7 Packet ∗copy = packet−>Copy ( ) ;
8 m rece i v e r s [ i ]−>Receive ( copy ) ;
9 }

10 }

In this case, using COW decreases so considerably the cost of a Copy operation that it
makes it possible to use it liberally where others (see 3.4.1) would have avoided it. This
considerably decreases the constraints which every receive function must obey and thus
makes it both easier to write these functions and easier to modify and maintain a large set
of such receive functions located in independent modules.

3.5.3 Advanced Copy-On-Write

The simple-minded approach described above worked amazingly well in many of our ref-
erence usage patterns (see specifically 3.4.1 and 3.4.3) but also failed to avoid deep copies
of the packet in the more write-oriented patterns such as 3.4.2 and 3.4.4. To illustrate this
failure, we turn to the case of a TCP packet transmission where the TCP layer keeps a ref-
erence to the underlying byte buffer before starting the transmission. Figure 3.8 describes
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the state of our payload+TCP buffer shared by two packets (hence, with a reference count
of two) before the IP layer inserts its IP header while figure 3.9 shows how the shared
buffer has been unshared by creating a copy of the original buffer and decrementing its
reference count by one: each packet now holds a reference to a separate unshared protocol
buffer with different contents.

Zero Area

TCP
Count

=2

Packet 1

Packet 2

Figure 3.8: The TCP and the IP stacks hold references to a shared buffer.
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Figure 3.9: The IP stack inserts the IP header, triggers an un-share operation, completes
the insertion.

The key to eliminate this deep copy all together is to notice that although both the
TCP and IP stack hold a reference to the same packet, they modify different areas of its
protocol buffer. A perfect COW implementation would thus be able to track which packets
hold a reference to which parts of the protocol byte buffer: this would require that the
shared data structure holds a list of back references to the packets it is used by and that
each packet remembers which area of the packet it sees.

Figure 3.10 describes these different views of the same underlying data for our TCP
and IP packets (for clarity of exposition, it assumes that the zero area does not exist and
considers payload to be part of the protocol byte buffer). The dirty area referenced by the
TCP layer contains solely the application level payload. The dirty area referenced by the
IP layer contains both the TCP header and the application payload before the insertion
of the IP header. After the insertion of the IP header is complete, its dirty area is re-sized
to also reference the IP header.

If we assume that the shared data structure is extended to contain the list of packets
it is referenced by, the introduction of the extra per-packet dirty area allows the IsShared

method to be modified thusly:

1 c l a s s Packet
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Figure 3.10: Keeping track of the dirty area

2 {
3 . . .
4 s t r u c t SharedData
5 {
6 . . .
7 std : : vector<Packet ∗> packets ;
8 } ∗m data ;
9 } ;

10 bool Packet : : I sShared ( void )
11 {
12 i f ( m data−>count <= 1)
13 re turn f a l s e ;
14 f o r ( i n t i = 0 ; i < m data−>packets . s i z e ( ) ; i++)
15 {
16 Packet ∗ other = m data−>packets [ i ] ;
17 i f ( other == t h i s )
18 cont inue ;
19 i f ( other−>d i r t y S t a r t < m dir tyStar t
20 | | other−>dirtyEnd > m dirtyEnd )
21 re turn true ;
22 }
23 re turn f a l s e ;
24 }

When the shared reference count is strictly bigger than one, IsShared starts a second
check to see if anyone who holds a reference to the same shared data also holds a larger
dirty area than itself. If no one does, we know that we can safely add new headers or
footers outside of our dirty area.

In practice, though, a real implementation does not need the perfect sharing detection
provided by the above algorithm and data structures: we can accommodate a certain
level of false positives for sharing detection because false positives do not endanger the
correctness of our programming interface since they trigger only a couple of extra memory
copies.

The sharing detection heuristic implemented in ns-3 is based on a simple observation: it
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is safe to write outside of the maximum dirty area that is the union of all dirty areas of all
packets referencing the shared buffer. The ns-3 packet class keeps track of this maximum
dirty area by updating it whenever a packet writes in some part of the shared buffer:

1 c l a s s Packet
2 {
3 . . .
4 s t r u c t SharedData
5 {
6 . . .
7 u i n t 3 2 t d i r t y S t a r t ;
8 } ∗m data ;
9 } ;

10 void Packet : : AddHeader ( const Header &header )
11 {
12 i f ( I sShared ( ) )
13 Unshare ( )
14 m current −= header . GetSize ( ) ;
15 m data−>d i r t y S t a r t = m current ;
16 header . S e r i a l i z e (&m data−>b u f f e r [ m current ] ) ;
17 }

and the IsShared method uses the dirtyStart field to try to figure if the user is attempting
to write outside (dirtyStart == m current) of the dirty area. If so, there is no need to
Unshare and IsShared can return false:

1 bool Packet : : I sShared ( void )
2 {
3 i f ( m data−>count <= 1)
4 re turn f a l s e ;
5 re turn m current > m data−>d i r t y S t a r t ;
6 }

In the case of the TCP/IP example discussed here, this heuristic is sufficient to avoid the
deep copy and thus allows us to maximize performance.

3.5.4 Tags: simulation-only per-packet data

Beyond the manipulation of protocol headers and footers, every non-trivial simulation
model must deal with other kinds of per-packet information. For example, many users find
it convenient to attach the current simulation time to each packet when it is created to be
able to infer the one way delay when they receive the packet. Other applications store an
integer in each packet to identify the Quality of Service (QoS) class it belongs to so that
the local 802.11 stack can enqueue it in the right transmission buffer.

The easy solution for this kind of problem is to add new fields to the Packet class.
This approach suffers from one major drawback though: over time, it becomes impossible
to control the growth of the set of data stored in a packet and this leads to the merging
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hell alluded to in section 3.3.1 when two developers attempt to use together the modules
they developed independently.

Yans introduced the concept of Tags to deal with this issue and ns-3 adopted and
extended this solution to allow a user to attach and retrieve an arbitrary blob of data to
a packet or to any set of bytes within a packet. This information is stored in on-the-side
buffers whose management was implemented with the same COW techniques discussed
previously.

Attaching a tag to an ns-3 packet is remarkably similar to the addition of a header to
a packet:

1 Ptr<Packet> packet = . . . ;
2 MyTag tag ;
3 tag . Se tF i e ld ( . . . ) ;
4 packet−>AddPacketTag ( tag ) ;

The implementation of a new kind of tag such as MyTag merely requires subclassing the
Tag base class and implementing the four pure virtual methods it defines.

3.5.5 Metadata: automatic pretty-printing

The choice of a protocol byte buffer which contains solely real network bytes forced us to
develop the elaborate Tag mechanism discussed above, but it was also the source of one
of the most visible missing pieces of functionality: it was not possible to automatically
pretty-print the content of a packet because the Packet class did not have any information
about the semantics of the bytes that it contained. To print the content of a packet for
debugging of tracing purposes, ns-3 users had to manually parse the protocol byte buffer
which was seen by many as suboptimal.

To support this feature, the ns-3 Packet class keeps track in a separate on-the-side
data structure of the list of headers and footers that are added or removed explicitly by a
user. Each entry in this list describes the type of the header, its size, and the size of the
fragment of this header that is present in the protocol byte buffer. When the time comes
to print the content of a packet, we parse this list and print information about each header
fragment if there are any. Then, for each non-fragmented header, we create a header of
a matching type, de-serialize its data from the protocol byte buffer, and invoke its Print

method.

While this method is very slow, it is never an issue in practice: when a user attempts
to pretty-print the content of a packet, he usually does not care about speed because he
is debugging or he is dumping the resulting string in a hard disk file which tends to make
his simulation IO-bound rather than CPU-bound. The major advantage of this approach
is that it is entirely automatic and merely relies on each protocol header to implement a
Print method.
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3.5.6 Summary

In this section, we have given an outline of how the ns-3 packet implementation works
and the data structures it uses to provide a robust API that supports the whole range
of features we defined as requirements in section 3.1. While fragmentation and reassem-
bly support came naturally from our decision to use a protocol byte buffer that matches
an actual network packet, the need to provide automatic pretty-printing of packets and
simulation-only per-packet user data forced us to integrate respectively a metadata and a
Tag mechanism.

3.6 Performance Evaluation

Although it is important for us to provide in ns-3 a packet facility that supports a large
set of features, we also know from experience that the performance of the simulator as a
whole depends critically on the performance of its packet facility. In this section, we first
consider the problem of defining reference micro-benchmarks that are based on the usage
patterns described in 3.4 and that are meaningful to the performance of real simulation
scenarios. Then, we compare the performance of the ns-3 implementation with that of
GTNetS, OMNeT++, and Yans on these reference micro-benchmarks.

3.6.1 Benchmark description

Translating the abstract usage patterns first outlined in 3.4 into concrete benchmarks is
more difficult than it appears: each simulator has different programming interfaces with
different semantics and wildly different approaches to memory management. The version of
each benchmark used by each simulator is thus necessarily different but we believe that they
are sufficiently close from a functional perspective to make these comparisons meaningful.
To simplify our implementation, the benchmarks that are described here always used UDP
and IPv4 headers even when the original usage pattern is more appropriate for TCP or a
IEEE 802.11 protocol.

The list of benchmarks described below contains mostly safe versions of the usage
patterns described in 3.4: the safe adjective refers here to the fact that these benchmarks
attempt to mimic a protocol stack implementation that is careful to always perform a
packet copy when it is necessary to avoid that multiple receivers of a packet do not interfere
with each other. Some of the simulators benchmarked here used instead for some of these
patterns an unsafe variant which avoided the extra packet copy to optimize their processing
paths. These variants are included below and marked with the keyword unsafe.

1. reception: create a packet which contains payload, UDP, and IPv4 headers, remove
the IPv4 header, and send a copy of the packet to one receiver at the higher layer.
The receiver removes the UDP header.

2. forwarding: create a packet which contains payload, UDP, and IPv4 headers, re-
move the IPv4 header, copy the packet, insert the IPv4 header again.
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3. transmission: create a packet which contains payload, insert an IPv4 header, and
send a copy of the packet to one receiver. The receiver removes the IPv4 header.

4. re-transmission: create a copy of a packet which contains payload, insert UDP and
IPv4 headers.

5. forwarding unsafe: create a packet which contains payload, UDP, and IPv4 head-
ers, remove the IPv4 header, and insert the IPv4 header again.

6. reception unsafe: create a packet which contains payload, UDP, and IPv4 headers,
remove the IPv4 header, and then send the same packet to one receiver at the higher
layer. The receiver looks at the UDP header without removing it.

3.6.2 Benchmark results

These benchmarks were run on three different systems, including one 32bit i386 system,
one 64-bit x86 64 Intel system, and one 64-bit x86 64 Amd system. All results were
similar which is why we include only the results from the x86 64 Intel system. Each
benchmark ran its iteration loop one million times. They were run at least 10 times, and
until the standard relative deviation of their measured execution time drops below 0.05.
We recorded the minimum execution time over these runs and report them in table 3.2.
Table 3.3 summarizes the relative speedup provided by the ns-3 implementation. The
ns-3 metadata column indicates the result of these benchmarks on ns-3 when we enable
recording metadata about the set of headers and footers present in a packet to be able to
pretty-print its content automatically.

ns-3 ns-3 metadata OMNeT++ GTNetS Yans

reception-safe 0.31 0.35 0.62 0.70 0.97
transmission-safe 0.44 0.50 0.94 0.79 0.95
forwarding-safe 0.42 0.47 1.18 0.80 1.02
retransmission 0.40 0.46 0.77 0.68 1.90
reception-unsafe 0.20 0.23 0.37 0.36
forwarding-unsafe 0.29 0.34 0.38 0.35 0.62

Table 3.2: Minimum execution time (s)

3.6.3 Summary

Despite the numerous features provided by the ns-3 packet implementation, our bench-
marks show that it compares favorably in terms of cpu efficiency against other simulators.
Whether metadata recording is enabled or not, the ns-3 packet implementation is consis-
tently the fastest and is up to 2 times faster than the GTNetS and OMNeT++ simulators.
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ns-3 ns-3 metadata OMNeT++ GTNetS Yans

reception-safe 1.00 1.11 1.98 2.25 3.07
transmission-safe 1.00 1.14 2.13 1.78 2.16
forwarding-safe 1.00 1.12 2.83 1.92 2.44
retransmission 1.00 1.15 1.92 1.70 4.76
reception-unsafe 1.00 1.15 1.84 1.76
forwarding-unsafe 1.00 1.18 1.30 1.22 2.12

Table 3.3: Relative speedup

3.7 Conclusion

In this chapter, we demonstrated that it is possible to support efficiently the large set
of requirements described in 3.1 and successfully merge together the two major imple-
mentation approaches that had been chosen until now and that were championed by GT-
NetS/OMNeT++ on one side and Yans/GloMoSim on the other side.

Table 3.4 extends table 3.1 to include the ns-3 feature set and illustrates the un-
avoidable cost of supporting together all this functionality: the complexity of the ns-3
implementation measured by its size in KLOCs is considerably higher than that of any
other simulator.

ns-3 GTNetS OMNeT++ Yans GloMoSim ns-2

Code size (KLOCs) 7.8 1.4 1.6 1 0.8 0.9
Pretty-printing X X X
Transparent real bytes X X X
Fragmentation X X
Reassembly X X
Memory efficiency X X X
Extensibility X X X X X
Robust API X X X
Simulation data X X X X X

Table 3.4: Features found in ns-3 and other simulator packet implementations

However, the price in implementation complexity that is paid here is more than offset
by the ability of this implementation to transparently support the conversion back and
forth between simulation packets and actual network bytes since it is the fundamental
building block upon which two major features of ns-3 are built:

• The ability to use ns-3 as a real-time emulator that can be connected to network
testbeds and field experiments to extend their scalability.

• A simulation environment that can directly execute existing user space and kernel
space protocol implementations within ns-3.
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While we will not discuss further the former because there is little to it beyond the transpar-
ent packet conversion support described in this chapter, the next chapter deals exclusively
with the latter.
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The growing need to be able to conduct realistic experiments which involve complex
cross-layer interactions between many layers of the network stack has led network re-
searchers to slowly stop using network simulations because their models are seen as not
being sufficiently realistic. One of the objectives of this thesis, however, is to show that
experiment realism is not necessarily antithetic to the use of simulators. So far, we have
shown that it is possible to seamlessly integrate every model of a simulator in a larger
testbed or field experiment by using a real-time simulation scheduler and carefully design-
ing some of the critical components of the simulator such as the packet facility. Such a
setup makes it easy to incrementally tradeoff realism for increased scalability in a field or
a testbed experiment by interconnecting simulated networks to the system being studied.

In this chapter, we consider the converse operation where a simulator trades off scal-
ability for realism by embedding within ns-3 existing protocol implementations that were
never designed to run in a simulator. We thus demonstrate that it is possible to consid-
erably increase the realism of a simulation while retaining its repeatability and ease of
debugging and to make it trivial to repeat and compare the result of the same experiment
in a testbed by using the same protocol implementation in both cases.

Figures 4.1a and 4.1b illustrate the problem we attempt to deal with: the former de-
scribes the case of two Border Gateway Protocol (BGP) routing daemons that are running
within UNIX hosts and that are interconnected through a single inter-Internet Service
Provider (ISP) link while the latter describes a simulation that directly executes the soft-
ware components of that system directly within the simulator. The components that are
provided directly by ns-3 are highlighted in light grey; the white boxes represent code that
was not implemented in ns-3 but that runs within the simulator in simulated time. In this
case, the left-most node simulates the BGP daemon on top of the simulated Linux TCP/IP
stack while the right-mode node runs the BGP daemon on top of the ns-3 native TCP/IP
stack.
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(b) Two BGP daemons running within ns-3 with
Linux TCP/IP stack

To be able to run the scenario depicted in figure 4.1b, we need to virtualize a number
of services so that multiple instances of the same protocol implementation running within
our simulator are isolated from each other:

1. First, we need to make sure that each protocol implementation instance does not
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share its global and static variables with another instance of the same protocol im-
plementation.

2. Then, to simulate a user application such as the BGP daemon running on top of
a UNIX system, we must provide a way to intercept all calls to UNIX-compatible
functions and replace them with a simulation implementation. For example, we
need to make sure that every call to the UNIX gettimeofday function is eventually
translated in a call to a function which returns the simulation time instead of the
wall-clock time.

3. Finally, to run within the simulator an OS-level protocol implementation such as the
Linux TCP/IP stack, we need to intercept calls to OS functions and redirect them
to simulation implementations. In the case of the Linux TCP/IP stack, the kernel
memory allocation function kmalloc is a good example of a function that must be
replaced.

While it is quite easy to achieve the above by manually modifying the source code of
the relevant protocol implementations and recompiling them, those who have tried to do
so have usually regretted it quickly. These large and intrusive modifications are usually
similar to what is presented in figure 4.1: global variables are transformed into global
arrays of global variables1 while system functions such as read are renamed with a prefix
or a suffix such as sim read. When the time comes to re-apply these manual modifications
to a new version of the original protocol implementation, most simulator developers simply
give up and do not upgrade.

1 s t a t i c i n t g some var ;
2 void some funct ion ( void )
3 {
4 g some var++;
5 read ( socket , . . . ) ;
6 }

s t a t i c i n t g some var [ 1 0 0 ] ;
void some funct ion ( void )
{

g some var [ c u r r e n t s i m u l a t i o n i d ()]++;
s im read ( socket , . . . ) ;

}

Figure 4.1: Manual protocol implementation modifications: read is renamed sim read and
global variables are transformed into arrays.

The main challenge we deal with in this chapter is thus the problem of building a
complete Direct Code Execution (DCE) environment that can execute in a simulator un-
modified user space and kernel space protocol implementations so that upgrading from a
protocol implementation version to another is trivial. 2

1 In this example, the current simulation id function returns a unique id which represents the in-
stance of the protocol currently executing. There are more elaborate variants which make use of macros and
dynamic allocation of the global data array to avoid wasting memory needlessly but they are functionally
equivalent to this version.

2A nice side-effect of this objective is that it should make it possible to run multiple versions of the
same protocol implementation within the simulator to test inter-operability problems.



72 CHAPTER 4. DIRECT CODE EXECUTION

Because many other tools share similar objectives and provide functionality that might
appear related, section 4.2 discusses how these existing projects fall short of properly
addressing all the requirements we set out to solve.

In section 4.3, we proceed to describe the foundation upon which we build the ns-3 DCE
environment: the Virtualizing Dynamic Loader (VDL) Executable and Linkable Format
(ELF) loader is used to both virtualize access to every global and static variable and to redi-
rect function calls to system facilities from their normal implementation to a simulation im-
plementation. Later on, in section 4.4 we discuss the binary-compatible re-implementation
of the Linux user space libraries we use to run unmodified Linux executables within ns-3
and then we review in 4.5 the kernel space facilities that are re-implemented in ns-3 to run
an unmodified recompiled Linux network stack.

Finally, to highlight the CPU and memory usage of the resulting simulation environ-
ment, we compare in section 4.6 its behavior against that of the LinuX Containers (LXC)
Network Namespace (NetNs) virtualization tool.

4.1 Requirements

In the introduction, we already mentioned some of the important characteristics of a good
DCE environment but we state them formally here for clarity:

• No manual source code modifications: we must avoid having to perform non-
automated source code modifications on existing protocol implementations. The cost
of having to regularly port these manual modifications from an old version to a new
version of an external protocol implementation is too high to be sustainable in the
long term.

• Integrated debugging: it should be possible to debug the whole simulation with
a single debugger program to be able to easily, inspect, place breakpoints and trace
the behavior of every component from a central user interface. Solutions that require
the use of a distributed debugger to control multiple processes at the same time are
explicitly not acceptable.

• Efficiency: the memory and CPU cost of virtualizing a single external protocol
implementation for execution within the simulator should be as low as possible to be
able to run simulations which process many packets per second and include a large
numbers of instances of this protocol implementation.

• Kernel-space and user-space: we want to be able to embed within the simulator
both kernel-space (the TCP/IP Linux stack for example) and user-space (the BGP
Zebra daemon for example) protocol implementations.

• C and C++: we need to support at least C and C++ since the protocol implemen-
tations we want to reuse are written in both languages.
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4.2 Related work

While increasing the realism of a simulation by integrating existing real-world protocol
implementations directly in the simulator is not a new idea, none of those who tried
to tackle this problem have so far succeeded in providing adequate answers to all the
requirements stated above.

4.2.1 GTNetS, ns-2, GloMoSim, Yans

GTNetS, ns-2, GloMoSim, but also Yans have all succumbed to the temptation of integrat-
ing manually directly within the source tree of the simulator existing real-world protocol
implementations. GTNetS and ns-2 embed [13] the Zebra [6] BGP implementation, Glo-
MoSim [36] uses the Free BSD 2.2.2 TCP stack and Yans [23] stole its TCP stack from
Berkeley Software Distribution (BSD) 4.4 Lite.

However, the apparent simplicity and popularity of this approach, should not hide the
fact that it is merely a short-term stop-gap solution: the considerable effort needed to
perform the initial modification must be repeated over and over again for each subsequent
release from the upstream project. The logical consequence is that we are not aware of any
simulator which has attempted to keep track regularly of these new releases: the simulator
models become stale and their usefulness quickly decreases over time.

4.2.2 Alpine

Alpine [15] was originally developed as a framework to ease the development of new TCP/IP
protocols and algorithms: its sole objective was to move the TCP/IP implementation from
the kernel to a user-space library. The idea behind this approach is that it alleviates the
need to perform systematic system reboots to test each change. Bugs also do not translate
anymore in a blue screen of death: it is easy to recover from the crash of a user-space
library and to analyze it with a simple debugger.

The source code of the FreeBSD 3.3 kernel network stack was thus extracted and
recompiled in a shared library together with appropriate wrappers around kernel-level
primitives to provide an appropriate runtime environment to the network stack. This
shared library also wraps and exports the network stack kernel-level primitives under an
implementation of the socket API. Applications which intend to use this TCP/IP stack
then merely need to link explicitly against this library to make sure that any call to a
socket function is redirected to the Alpine implementation rather than go through the
normal kernel path.

Although Alpine requires no manual source code modifications, works for both user-
space and kernel-space protocol code, and is reasonably efficient, it is inherently limited to
work with a single network stack and a single application per host process. Of course, it
would be possible to run multiple instances of Alpine on a single host system to experiment
with multiple network stacks but it would not be possible to use more than one application
per stack. Furthermore, this would make debugging the resulting set of applications very
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hard without a distributed debugger since each network stack and application runs in a
different process.

4.2.3 nfsim

The netfilter simulation environment (nfsim) [30] was created with objectives very similar
to Alpine: the goal was to provide a test framework to automate the testing of the Linux
kernel netfilter stack that is used throughout the network stack to intercept and mangle
packets for tasks as diverse as connection tracking, dynamic NAT, etc.

These similar objectives translated in similar implementations: only one instance of
the network stack can be simulated and normal applications such as iptables can be
interconnected to the simulator by using an LD PRELOADed library providing overriding
wrappers for the {get,set}sockopt functions.

4.2.4 COOJA

COOJA [29] is a network simulation tool that was originally implemented to facilitate the
development of protocols for sensor networks using the Contiki [14] OS. The COOJA Java
simulation core contains wireless link models that are used to simulate the wireless links
interconnecting sensor devices and allows users to execute directly within the simulator
binary images of the Contiki OS.

These Contiki images are executed one after the other, one event at a time through
JNI bindings. Their data segments are copied back and forth between the Java simulator
and the C memory every time a native Contiki event is executed. Unfortunaly, the authors
report [29] that this approach to execute multiple native Contiki images within the same
process has slightly less than 11% CPU efficiency: more than 89% of the simulation time
is spent on bookeeping tasks to merely ensure that each node views a distinct copy of its
global and static variables.

4.2.5 Entrapid

Entrapid [18] might be seen as the ancestor of all the tools we discuss here: it predates
Alpine by many years and yet achieves a considerably-larger set of features.

To support more than one instance of the network stack within the simulation process,
Entrapid integrates a copy of the BSD 4.4 kernel which is manually modified: every dec-
laration of and access to a global variable has been changed as described in section 4.2.1.
Entrapid integrates applications by linking them against its local copy of the BSD 4.4 kernel
and allows multiple instances of a single application to exist within the simulation process
when these applications are re-entrant. Although there is not enough clear information
about this, we can safely assume that the default applications shipped with Entrapid were
modified manually to remove their global variables and make them re-entrant.

Entrapid used liberally manual source code modifications as a means to integrate exter-
nal protocol implementations in a network simulator and was thus probably impossible to
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maintain in the long term (which is also probably the reason for its sudden disappearance).
It was nonetheless the first instance of a fully integrated network simulation environment
that integrates both user-space and kernel-space protocol implementations within a single
process under the control of a single debugger.

4.2.6 Network Simulation Cradle

The Network Simulation Cradle [19] was designed as a simulation tool which could inte-
grate every existing kernel network stack and allow users to compare their behavior easily.
Because they wanted to integrate many different external protocol implementations, the
project started with the assumption that it would be crucial to avoid source-level modifica-
tions of these network stacks to be able to maintain them with few development resources.
NSC thus automates completely the set of source-level modifications needed to avoid re-
entrancy issues and to virtualize the global variables used by each network stack.

The aptly-named globalizer [20] is run through every source file of each network stack
to generate a new C file and the resulting C files are then recompiled and linked together
into a set of shared libraries which are then used by the network simulator. ns-3 integrated
very early on support for NSC as an alternative to its native TCP stack thanks to support
from the Google Summer of Code program and we spent a lot of time trying to figure out
whether or not this approach could be extended to support the C and C++ applications
we had in mind. However, it turns out that, in practice, the source code parser used in
[20] is brittle and we eventually realized that parsing source code is inherently a game that
we could not win given our limited development resources (see notably [12]).

4.2.7 NCTUns

The approach chosen in NCTUns [34] differs radically from everything we considered so far.
Although they started from similar premises, that is, maximize realism by integrating real
protocol implementations and minimize effort by minimizing the amount of modifications
needed, their simulator departs considerably from other solutions.

NCTUns modifies slightly the source code of its host TCP/IP stack as well as the
applications that run in it so that their view of time is synchronized with the external
simulation scheduler. Furthermore, they all collaborate to virtualize the host network
stack and allow multiple instances of the network stack, each with its own routing table,
to co-exist peacefully together. The simulation scheduler is also responsible for modeling
the network links interconnecting each network stack.

Small modifications for each protocol implementation coupled with the use of a separate
process for each application allows the NCTUns simulator to avoid complex virtualization
techniques. The cost, though, is manyfold: the time synchronization algorithm used by
the simulation scheduler does not ensure full reproducibility. Furthermore, debugging all
the simulated application processes requires a distributed debugger. Finally, the source
code modifications needed for applications are not really trivial and require a good under-
standing of their behavior and their use of time, sockets, and signal-based timers.
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4.2.8 IMUNES, OpenVZ, LXC

Similarly to Alpine and in contrast with the other options considered so far, IMUNES [35],
OpenVZ [32], and LXC [4] do not use a simulated virtual time. Instead, these tools run
experiments in real time. These container virtualization technologies allow users to create
within the same host OS kernel multiple instances of its network stack. Contrary to the
NCTUns solution which uses an elaborate scheme of virtual IP addresses to virtualize solely
the routing table, these tools add a level of indirection for every access to a data structure
in the network stack which results in a much more coherent view of the virtualized network
stack. Furthermore, they do not require any changes to user-level applications: the user
is responsible for creating each virtual network stack and for executing each application
within its relevant stack.

However, this container approach still suffers from many drawbacks: first, IMUNES and
OpenVZ but not LXC are developed as a large and intrusive patchset on the entire network
stack that must be maintained across FreeBSD and Linux releases. Another issue worth
mentioning is that these tools cannot be used with a network simulator other than in real-
time emulation mode and because each application runs in a separate process, debugging
such an experiment can easily become painful without a distributed debugger.

Strictly speaking, neither IMUNES nor its Linux equivalents can be used directly by a
network simulator but they are usually seen as the lightest possible virtualization technol-
ogy both in terms of CPU and memory overhead. Every other virtualization tool based on
platform-level virtualization such as [31, 10, 8] introduces more overhead and thus achieves
lower CPU and memory performance when under heavy network traffic. Because LXC is
the only container approach that has been integrated in the underlying OS kernel, we thus
chose to use it in section 4.6, as a baseline against which we can compare the performance
of our DCE environment.

4.2.9 dONE and Weaves

The Distributed Open Network Emulator [11] is a network simulator which embeds a
copy of the Linux 2.4 network stack [22] as well as UNIX applications such as ping, and
ftp. Weaves [28, 27] is used to provide the underlying virtualization technology: its main
purpose is to virtualize all access to global and static variables. The approach chosen
in Weaves is very similar to NSC: while NSC parses and modifies the source code of
the application, Weaves parses and modifies the textual assembly code generated by the
compiler. The user is then responsible for assembling this textual assembler file in a binary
object file which can then be loaded by the Weaves runtime within the simulator.

Details about the assembly-level modifications performed by Weaves are scarce but it
appears to:

• transform every access to a static variable in an access to a global variable so that
they go through an extra memory indirection
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• assume that the %ebx register is used by the compiler as the base register for all
accesses to the global variable indirection table

• remove and replace with ad hoc code the %ebx register setup instructions from the
prologue of each function so that the Weaves runtime can control indirectly which
indirection table is used for access to global variables

Assuming that %ebx is used as the sole base register for access to global variables
appears however especially dubious. As per the i386 Application Binary Interface (ABI)
[3], compilers are free to (and do) use any register in leaf functions (functions which do not
call other functions) which means that controlling the sole %ebx register is not sufficient
to control which global variables are accessed by an arbitrary function.

Sadly, the source code of the assembly parser used by Weaves was never released which
makes it hard to verify that the above assumptions are correct. If they are, then the
ftp applications used by the Weaves developers to demonstrate their tool either did not
contain leaf functions that access global or static variables or were modified manually to
not contain any.

However, a more problematic issue is the fact that Weaves relies on register-based
addressing to be used to access the indirection table. On many architectures such as 64-
bit x86 systems [25], PC-based addressing is instead used by default: rather than access
the indirection table through a special register that is setup on entry to the function, the
compiler takes advantage of memory access instructions that reference the address of the
currently executing instruction stored in the Program Counter (PC). On these systems,
the address of the indirection table is directly calculated at each access which makes it
impossible to control which indirection table is accessed by merely changing globally the
value of a single register such as %ebx.

One can only speculate on the kind of assembly transformation that the authors of this
tool intended to implement on such systems but it is likely that they would all have required
fairly considerable assembly code analysis and transformation with a level of complexity
similar to that of implementing the complete robust C++ parser needed to make NSC
work in our use case. This might be the reason for why the Weaves virtualization tool was
never released or further developed.

4.2.10 Summary

Because there have been many different approaches to the same or very similar problems,
it can be hard to understand the difference and the limitations of each of these tools.
Table 4.1 provides a synthetic summary of how each of the discrete event network simu-
lators discussed so far fare against our list of requirements while table 4.2 focuses on the
virtualization environments.

The most notable fact to highlight is that there are very few projects that attempted
to develop a solution that requires no manual modifications to the protocol stacks, allows
multiple nodes to be simulated, and runs in simulated time to make debugging easy. NSC,
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user
protocol

kernel
protocol

many
nodes

easy
debugging

automated
modifications

GTNetS X X X
Glomosim X X X
ns-2 X X X
Yans X X X
nfsim X X X X
COOJA X X X X
Entrapid X X X X
NSC X X X X
NCTUns X X X
dOne + Weaves X X X X X

Table 4.1: Discrete event network simulators: requirements

user
protocol

kernel
protocol

many
nodes

easy
debugging

automated
modifications

Alpine X X X X
IMUNES X X X
OpenVZ X X X
LXC X X X X

Table 4.2: Virtualization environments: requirements

dOne/Weaves and COOJA are the only projects that fall in this category. While NSC and
COOJA are fairly serious contenders, we are very skeptical that Weaves really worked and,
if it worked, that it could have been used on anything but the test applications and the
Intel 32bit system used by its authors. NSC, on the other hand has already demonstrated
its usefulness and was integrated in ns-3 but its source code parser cannot be extended to
support C++ without considerable work. In the following sections, we thus consider only
COOJA as a robust albeit slow solution.

4.3 User-space virtualization

Most people might conclude from the review we conducted in previous section that what
we are trying to achieve is hopeless and that there is no way to fully automate efficiently
the virtualization of the accesses to the global and static variables of a C or C++ program.
In this section, we demonstrate however that it is possible to leverage the code generation
capabilities of existing C and C++ compilers together with the functionality provided by
the system ELF dynamic loader to achieve our objectives.

First, we implement an ad hoc ELF loader that provides excellent robustness and low
CPU and memory usage even when large numbers of protocol implementation instances
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are loaded in memory. We then consider an alternative based on the COOJA virtual-
ization algorithm that takes advantage of the capabilities of the standard ELF dynamic
loader found in normal Linux distributions but that exhibits poor CPU and memory us-
age. Finally, we estimate the relative performance of these two options and highlight the
comparatively excellent CPU and memory efficiency of our ad hoc ELF loader.

4.3.1 Background

Before we describe the implementation details of our User-space virtualization technique,
we start with some background discussion on the structure and the behavior of the code
generated by a typical compiler to access global and static variables.

On every CPU/OS combination, the platform Application Binary Interface (ABI) de-
fines precisely the rules that must be followed to access a global or a static variable. Most
UNIX systems have converged over time to a common approach usually refered to as the
System V Application Binary Interface with CPU-specific supplements [25, 3]. All the
work discussed here is thus applicable to every modern UNIX OSs and to every CPU.
However, for the sake of clarity, all examples will refer to the 32bit Intel CPU architecture.

In general, three methods can be used to access a global or a static variable, depending
on which compilation flags were specified during the compilation and link stages,

• direct access by absolute address,

• indirect access by base address, and

• indirect access by current address

The first method does not provide any easy opportunity to virtualize access to global
and static variables so we will not discuss it further here.

Indirect access by base address: LTR

1 s t a t i c i n t g a ;
2 i n t main ( i n t argc , char ∗argv [ ] )
3 {
4 g a++;
5

6

7 }

mov 0x177c ,%eax
add $0x1 ,%eax
mov %eax , 0 x177c

If the C source code shown below on the left is compiled with gcc -c -o test.o

test.c, and then linked with gcc -pie -o test test.o, the final executable contains
assembly binary code that uses a constant offset (0x177c here) from the base address of
the code section to the location of the static variable in the data section. In this case, the
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user also explicitely requested the linker to create a relocation table in the resulting binary
(the -pie option). The executable thus also contains two R 386 RELATIVE relocations
in its relocation table that reference the address of the two mov instructions used above.
When the dynamic loader maps this binary in memory, it patches the memory locations
referenced by these relocations by adding to them the base address of the binary.

These Load-Time Relocation (LTR)s rely on the compiler and the loader to collaborate
to make sure that the offset between the code and data sections is a constant, regardless of
which base address is used to load the code section. Figure 4.2 illustrates this relationship.

DataCode

Relocation Offset

Base Address

Increasing addresses

Figure 4.2: Memory layout of a Load-Time Relocatable binary

These rules make it possible to load the same binary at different base addresses in
memory which was very important for OSs such as DOS that did not use virtual memory
yet needed to run concurrently different programs using the same libraries. Nowadays,
though, this is rarely used because once they are loaded in memory and relocated, the
physical pages of the code section have a different memory content for each instance of
the now-unshared binary. This triggers very large memory usage when a library such as
the standard C library is loaded once by each of the many processes running on a modern
OS and this is what lead instead to the now-widespread use of Position Independent Code
(PIC) for shared libraries.

Indirect access by current address: PIC

1 s t a t i c i n t g s t a t i c ;
2 i n t main ( i n t argc , char ∗argv [ ] )
3 {
4 g s t a t i c ++;
5

6

7

8

9 }

c a l l g e t p c i n e c x
add $0x125e ,%ecx
mov 0x24(%ecx ) ,% eax
add $0x1 ,%eax
mov %eax , 0 x24(%ecx )
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Another option that can be used to generate a binary relies on PIC. While the LTR
code presented in previous section is position independent in the sense that it can be loaded
at different base addresses and still work, it is not position independent in the sense that
it needs someone to relocate it before being able to run. PIC code that does not need this
relocation step can be generated easily with the gcc -fpie -pie test.c command.

The code generated in this case is more complex but it can be decomposed in two steps:
first, lines 4 and 5 load in register %ecx the address of the data section, and then, lines
6, 7, and 8 access our variable as a constant offset from the start of this data section.
The important step here is the first one since instead of relying on a relocation to be
performed by the loader, the address of the data section is calculated at runtime with the
get pc in ecx function which returns in register %ecx the value of the current PC and
the GLOBAL OFFSET TABLE constant.

The code section thus requires no runtime relocations and is mapped read-only in
memory by the loader to ensure that multiple processes which map the same binary share
the same underlying physical pages instead of having their own set of unshared modified
pages.

4.3.2 Implementation

Both LTR and PIC binaries rely on a set of important common assumptions: the code
and data sections of a binary are always within close distance in memory and the data
section is always at a constant offset from the address of the first byte of the code section.
This memory layout leads to two possible implementation options: we can load a protocol
implementation binary in memory once and swap in and out a different data section when-
ever we execute an instance of this protocol so that the same code section sees different
data section contents. This option was originally championed by COOJA. Another option
involves loading the same binary multiple times in memory at different base addresses so
that each code section accesses a different data section.

In this section, we thus consider two implementations:

• DlmopenLoader: use the dlmopen function to load the same binary multiple times in
memory at different base addresses. See figure 4.3a.

• CoojaLoader: a straightforward implementation of the COOJA virtualization method.
See figure 4.3b.

Data1 Data2Code Code

(a) Map the same binary at multiple base ad-
dresses and share the physical pages of the code
section (grey)

Data2Data1Code Data Template

(b) COOJA: swap data sections on event
schedules
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The dlmopen loader

The source code of the dlmopen loader is the most readable implementation of the two
loaders we discuss here because it relies on the use of the dlmopen function which provides
most of the features we need. dlmopen is a variant of the classic dlopen function that was
originally implemented in the Sun Solaris OS and was later adopted by the GNU’s Not
Unix (GNU) C library implementation used by most Linux-based systems. Similarly to
dlopen, dlmopen loads a binary in memory, executes its static constructors, and returns a
void * handle to the newly-loaded binary. However, dlmopen extends the normal dlopen
semantics by interpreting one extra namespace argument to decide in which namespace the
binary should be loaded. This feature is critical because, by default, dlopen and dlmopen

never load the same on-disk binary file more than once at different base addresses in one
namespace. Creating multiple namespaces is thus the only way to ensure that the same
binary is loaded more than once and that each instance of the loaded binary uses a different
data section.

Each namespace created by dlmopen provides also a few other features but the most
useful one is that symbols are always resolved internally within each container which makes
it really easy to isolate completely a namespace from the other namespaces.

Sadly, while the implementation of the DlmopenLoader class is simple, the dlmopen

implementation provided by the GNU C library does not allow the creation of more than
sixteen namespaces which makes it impossible to create more than fifteen instances of
a protocol implementation within ns-3 (one namespace is reserved as the main default
namespace). This hardcoded constant represents the size of a statically-allocated array
that can be changed only through recompilation of the system C library.

Because we felt that it would have been inappropriate to ask the ns-3 users to recompile
and install a new compatible version of their system C library (it is usually much more
complicated than recompiling and installing a normal library), the DlmopenLoader class
comes also with a standalone implementation of the dlmopen function and the accompa-
nying ELF dynamic loader. The implementation of this new loader is much simpler than
the dynamic loader found in the GNU C library yet is both binary compatible (it could
replace the system dynamic loader seamlessly) and sufficiently complete to be able to run
complex applications such as the Firefox web browser on 32bit and 64-bit x86 systems
running many different Linux distributions (Fedora, Debian, Gentoo, Ubuntu).

Describing the details of the implementation of this loader would be fully out of the
scope of this thesis but we give below an overview of some of the most challenging aspects
of this project. Interested readers will profit from [24] which gives an overview of the way
an ELF loader works.

System calls: every access to system-level facilities such as mmap, open, etc. must
be made through direct invocations of the associated system calls (which requires minimal
CPU-specific assembly language magic). Furthermore, some of these system calls are much
lower-level than the more standard UNIX versions. For example, to protect its critical
sections, the loader must use the minimally-documented futex [16] system calls rather
than simpler primitives such as pthread mutex.



4.3. USER-SPACE VIRTUALIZATION 83

Memory management: the loader cannot rely on the malloc and free functions
since they are provided by the C library and its job is precisely to load the C library.
Instead, our loader wraps behind vdl malloc and vdl free a version of the Kingsley
malloc algorithm [21] which works with blocks of memory allocated with system calls to
mmap.

Application Binary Interface (ABI) compatibility: although traditionally the
interface between the libc library and the dynamic loader was clearly well-defined, this
is not the case anymore in the GNU C library implementation: over time, it has started
to call more and more undocumented functions found in the loader. Furthermore, the
C library directly embeds a copy of the dlopen/dlclose/dlsym family of functions: these
functions naturally access all the private data structures found in the loader which makes
it fully impossible to change the data structures of the loader without recompiling the
C library. To work around these problems, we dynamically patch the preamble of these
functions when we find them in the C library. The code inserted in these functions jumps
directly inside a binary-compatible version of the same functions located within our loader.

Debugger ABI compatibility: the interface between the system debugger, the C
library and the loader has traditionally been the r debug data structure which is located
in the loader and allows the debugger to parse the loader link map and detect new libraries
loaded by the user. While the memory layout of this data structure is relatively well
established, some of the details of its semantics are much less clear: countless hours were
spent to figure out what caused the debugger to crash or to report impossible values.

Workarounds: gdb but also valgrind are both very robust in general but the behavior
of our loader with regard to namespaces is non-standard and this used to trigger consider-
able confusion in both of these tools. We learned to work around these bugs but the single
biggest issue our early users reported was that their debugger behaved in very strange
ways. We had thus to invest a lot of time to narrow down the root cause of these problems
and submit patches to both upstream projects to fix them.

The COOJA loader

A great alternative to the complex implementation described above is the COOJA al-
gorithm: while it is intuitively fairly CPU inefficient since every context switch requires
copying entirely the data section two times (save old, restore new), it can serve as a baseline
against which the DlmopenLoader implementation can be compared.

The original description of this algorithm found in [29] calls for a simple implementation:
to ensure that the code section of a protocol implementation sees a different data section for
each separate instance of the protocol, we load the relevant binaries only once in memory
with dlopen, locate the position of their data sections and allocate a memory buffer to
save a copy of the original data sections. Then, whenever we need to create an instance of
these protocol implementations, we allocate a new set of buffers to save the data specific
to this instance, initialize these buffers from the original data sections saved previously,
and, then, copy the content of the buffers in and out of the main data section when the
associated instance needs to run.
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The detailed algorithm that leads to the call to dlopen is however a bit involved be-
cause we need to isolate the main simulation from what is going on within these protocol
implementations:

1. Create the new cache directory elf-cache/.

2. Copy the requested binary file and its dependencies to the cache directory. For exam-
ple, to load the program named udp-perf, we create the copy elf-cache/udp-perf.

3. To avoid crashes during the simulation shutdown when the protocol instances are
forcibly unloaded from memory, we disable the static destructors of the binaries by
removing from the on-disk copies the DT FINI and DT FINI ARRAYSZ entries from the
DYNAMIC array

4. To ensure that symbols are resolved only within this protocol instance, we modify the
DT SONAME and DT NEEDED entries of the DYNAMIC array to contain unique matching
identifiers that are allocated for each binary and for each dependency. For example,
the libc.so.6 DT NEEDED string found in a binary is replaced by 0004.so.6 if the
unique number 4 was assigned to the libc.so.6 library and the DT SONAME string
found in libc.so.6 is modified similarly so that the loader finds 0004.so.6 when
searching for the dependencies of the binary.

5. To complement the above modification of the dependency names, we finally load the
dependencies and the binary in inverse dependency order with the RTLD DEEPBIND

flag so that the dynamic loader searches the symbols first within the dependencies
specified and before the global simulation scope.

4.3.3 Performance evaluation

In previous sections, we mentioned a few times the relative CPU and memory efficiency
of the loader implementations presented above. In this section, we attempt to estimate
quantitatively their relative efficiencies by running the same simulation with different ver-
sions of the loader. To do so, we measure first the total memory usage once all protocol
implementations are loaded in memory and then the total number of packets simulated
per wall clock second.

Benchmark description

We consider the linear network topology shown in figure 4.3 because is easy to setup and
instantiate with a parametrized number of nodes: the left-most node sends traffic to the
right-most node while every other intermediate node forwards traffic coming from its left
network interface to its right network interface. To control accurately the size of the packets
sent and avoid any interference from congestion control algorithms, the application traffic
is encapsulated in UDP packets of a constant size.
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Linux
 UDP/IP
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Figure 4.3: Benchmark simulation topology.

In this scenario, we use udp-perf to generate and receive the application traffic.
udp-perf is a small command-line C program that uses the Linux high resolution timer
[17] API and thus allows it to control accurately the transmission rate of small packets
even when the target throughput is very high. udp-perf achieves typically much higher
throughput than what a tool such as iperf [33] would report in this case because it does
not use an accurate active loop that uses up CPU or an imprecise low-resolution timer API
to wait between packet transmissions.

The UDP/IP network stack used in this simulation is the Linux network stack. The
simulation environment that is used to provide a compatible runtime environment for the
Linux network stack and the udp-perf application is discussed in sections 4.5 and 4.4
respectively.

The parameters of the simulation link model were chosen arbitrarily since they have
no impact on the runtime performance of the simulator: the constant delay is set to one
nanosecond, the bandwidth to five megabits per second and the transmission queue is a
drop tail queue with a size of one hundred packets.

Benchmark results

Figures 4.4a and 4.4b report the average number of packets per wall clock second and
average memory usage after the protocol implementations are loaded for ten simulation
runs with the 95% confidence interval. One should note that these confidence intervals are
not visible, because they are too small.

Benchmark discussion

Unsurprisingly, figures 4.4b and 4.4a confirm the intuition that the overhead introduced
by the COOJA algorithm translates in measurable CPU and memory inefficiencies. The
extra data section template buffers which must be kept around to initialize new protocol
instances for CoojaLoader trigger from 1.5 to 2 times higher memory usage. On the other
hand, the memory copies which are needed upon each instance switch to update the data
sections cost much more CPU usage, close to eight times more.
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Figure 4.4: The COOJA loader against the dlmopen-based loader.

4.3.4 Summary

In this section, we have demonstrated that a careful use of standard compiler, linker, and
ELF dynamic loader features is sufficient to isolate efficiently both CPU and memory-
wise multiple instances of the same protocol implementation within the same simulation
process. While the resulting DlmopenLoader implementation is simple, it depends upon
the flexible but complex implementation of the dlmopen function provided by VDL. Table
4.3 highlights the comparatively higher implementation complexity of the dlmopen-based
solution implemented here as measured through the size of its C source code in KLOC.

Hopefully though, this extra implementation complexity is more than offset by the order
of magnitude CPU efficiency improvement observed in real simulations over the COOJA
algorithm.

portability C C++ cpu
efficiency

memory
efficiency

code size
(KLOC)

COOJA X X X X 1
dlmopen X X X X X 10

Table 4.3: Characteristics of the NSC, COOJA, and dlmopen-based loaders

4.4 The Linux user space emulation environment

While the dynamic loader described in previous section is the critical component of the
ns-3 DCE framework which makes it possible to avoid modifying existing protocol im-
plementations, executing one of these protocol implementations within ns-3 still requires
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simulation-specific replacement libraries for the C standard library, its companion the
pthread library, and many other Linux-specific facilities.

Naively, one might think that implementing the 1200 functions defined in the Portable
Operating System Interface [for Unix] (POSIX) [5] standard, the C library functions defined
in [1], and the GNU extensions provided by the GNU C library [2] would be sufficient to
create a runtime environment where most applications can execute. In practice, though, the
situation is both worse and better than what the above might hint at: most applications,
especially typical network protocol implementations, use a very small subset of the above
functions but they also use a lot of Linux-specific extensions, if only to access the host OS
routing tables and the kernel space network stack configuration facilities.

An emulation layer that is sufficiently close to a normal Linux user space runtime envi-
ronment to be able to execute the BGP daemon discussed earlier in this chapter represents
a large but tractable problem that is necessarily solved incrementally by identifying missing
functions and adding them on an as-needed basis for the programs of interest.

The implementation presented here covers thus only partially the total set of functions
available on a typical Linux distribution but it is sufficient in its current state to run
unmodified the Open Shortest Path First (OSPF) implementation found in the GNU Zebra
[6] routing daemon on top of the ns-3 native TCP/IP network stack. Over time, we expect
to add support for more than the 240 functions already implemented but in this section,
we highlight only the most challenging aspects of the ABI-compatible functions provided
today.

4.4.1 Task scheduling

The thread-based programming model defined by the POSIX programming interface is
fundamentally different from the event-driven model provided by a network simulator such
as ns-3. For example, the POSIX sleep function will block, while the rest of the system
keeps working, and eventually return to the caller when the right condition (at least one
second elapsed) is verified later. In ns-3, on the other hand, a function that needs to wait
for a specific condition would have to register a separate callback function to be invoked
when the condition becomes true.

Figure 4.5 illustrates these differences through the not-so-simple example of a one sec-
ond sleep. On the left-hand side of this diagram, the event-driven version of the function
Model::DoStuff that needs to sleep after doing some work with DoStuffStart. To sleep,
it merely needs to schedule an event for the end of the sleep and return to the simulator
scheduler which will eventually execute the DoStuffEnd function at time 1.0.

1 void Model : : DoStuff ( void )
2 {
3 DoStuf fStar t ( ) ;
4 Simulator : : Schedule ( Seconds ( 1 . 0 ) , &Model : : DoStuffEnd , t h i s ) ;
5 }
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On the right-hand side of this diagram, the thread-based version of the function Model::DoStuff

does not need to use a secondary continuation function to complete its work with DoStuffEnd

since Sleep blocks.

1 void Model : : DoStuff ( void )
2 {
3 DoStuf fStar t ( ) ;
4 TaskManager : : Current ()−>Sleep ( Seconds ( 1 . 0 ) ) ;
5 DoStuffEnd ( ) ;
6 }

Under the hood, though, Sleep is implemented with a number of secondary functions and
events. When the simulation starts, instead of directly executing the DoStuff function
from the main simulation thread, the Model class creates a task and associates with this
task the DoStuff function. Later on, this function is scheduled to from an event of the
main thread, starts the execution of DoStuffStart, and eventually enters Sleep. Sleep

first schedules an event for the end of the sleep so that the EndSleep function is called

Simulator::Run

EventImpl::Invoke

Model::Main

DoStuffStart

TaskManager::Schedule

TaskManager::Sleep

TaskManager::Schedule

EventImpl::Invoke

TaskManager::Schedule

DoStuffEnd

EventImpl::Invoke

Model::DoStuff

TaskManager::CreateTask

EventImpl::Invoke

TaskManager::Schedule

TaskManager::Exit

Simulator::Run

EventImpl::Invoke

Model::DoStuff

Simulator::Schedule(1.0)

DoStuffStart

DoStuffEnd

EventImpl::Invoke

EventImpl::Invoke

Simulator::Schedule(1.0)

0.0s

1.0s

1.9s

TaskManager::EndSleep

TaskManager::Wakeup

Figure 4.5: On the left, an event-driven one second sleep. On the right, a thread-based
one second sleep.
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when the event is executed later at time 1.0. Then, Sleep switches back to the main
simulation thread since it has no work left to do so that the main thread can continue
executing events. At some point, when the main thread reaches the event for time 1.0, it
executes the EndSleep function which wakes up the secondary thread and then switches
to the now-awake thread do restart the execution of the DoStuff function and allow it
to finally call DoStuffEnd first, and then, Exit. The latter is eventually responsible for
putting this thread in the DEAD state and switching one last time away from it back to the
main simulator thread.

This cooperative multitasking functionality is implemented by the TaskManager class
and uses either system-level threads or user space fibers [7] to manage the set of stacks
used by each application. To facilitate debugging and developing new applications, we use
by default the system-level thread implementation but it is easy to switch at runtime to
the much faster fiber -based implementation.

4.4.2 Resource management

The virtualization technique we use to execute multiple applications within a single pro-
cess inherently provides less isolation than more traditional platform-level virtualization
solutions which can fully encapsulate an entire Operating System and protect the rest of
the host system from any of its misbehavior. In the case of our DCE simulation platform,
every application can write outside of its own memory areas and thus modify the state
of other applications. This lack of protection is similar to embedded systems based on
CPUs which lack a Memory Management Unit and thus have no way to protect a process
from other processes through virtual memory. Although misbehaving applications are thus
likely to wreak havoc within the whole simulation, the ns-3 POSIX emulation libraries try
to provide as much isolation as possible between simulated processes by keeping track of
every resource allocated by each application and carefully releasing them on behalf of the
process when it exits.

For example, heap memory is an especially problematic case: in every modern C ap-
plication, heap memory is allocated and freed through the malloc and free functions.
C++ applications use new/delete which are implemented in terms of malloc/free. Dur-
ing execution, most applications are careful to post a matching free/delete for every
malloc/new to ensure that no memory is leaked and thus be able to perform long-duration
executions. However, a lot of applications rely on the OS to release all allocated resources
when their process exits: they don’t bother with invoking free/delete upon the process
exit and, instead, assume that the OS will be able to reclaim every leaked memory allocated
by malloc by merely un-mapping the heap pages of the process.

While we could assume that all the applications we run within our simulator are well-
behaved and that they all ensure that every malloc/new has a matching free/delete,
including when the process exits, doing so would be ignoring the reality of the applications
we are interested in and would seriously impede our ability to run long simulations which
repeatedly execute a set of applications.

We thus override the system malloc and free functions and replace them with a
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version which allocates memory from a process-specific pool: similarly to the dynamic
loader presented in section 4.3, we use the classic malloc Kingsley algorithm (we picked
[21] among the many alternatives because it is both trivial to implement and has decent
performance). Our implementation allocates first fixed-size memory blocks with mmap and
then uses the Kingsley malloc implementation to allocate user memory within these blocks.
Upon process termination, we explicitly unmap these blocks to ensure that no memory is
lost.

4.4.3 File descriptors

In POSIX applications, sockets, file accesses and a lot of other operations are performed
using file descriptors: each file descriptor is an integer which is an index into a per-process
table whose size is usually statically-bound. Each operation which manipulates files, di-
rectories, or, sockets uses a file descriptor to identify the object on which the operation
should be applied. As such, replacing the system socket functions forces us to override
all the system calls which can take as an argument a file descriptor. For example, read,
write, as well as open, close, and dup all need to be overridden and re-implemented.

Since we have to run within the same system process multiple simulated processes run-
ning on multiple simulated network nodes, our implementation of the open and opendir

functions uses a different file system root per simulated network node to ensure that
each simulated process can read and write only node-specific files. For example, if we
start two applications, A and B on node N0 and one application C on node N1, open

("/etc/resolv.conf") needs to access a different file on each node to make it possible
to configure both nodes differently. To handle this properly, we have to keep track of the
current working directory of each simulated process such that relative paths as used in
open ("foo") are also node-specific. This leads us to also override all the functions which
manipulate the current working directory, that is, chdir, getcwd.

The simplified pseudo-code for the open function shown below illustrates how these
replacement functions are typically implemented:

1 i n t simu open ( const char ∗path ) {
2 i f ( path == "" ) {
3 s imu errno = ENOENT;
4 re turn −1;
5 }
6 // f i n d an a v a i l a b l e f i l e d e s c r i p t o r
7 fd = a l l o c a t e s i m u f d ( ) ;
8 i f ( fd == −1) {
9 s imu errno = EMFILE;

10 re turn −1;
11 }
12 // prepend node−x p r e f i x
13 system path = s imu to system path ( path ) ;
14 // open the system f i l e



4.4. THE LINUX USER SPACE EMULATION ENVIRONMENT 91

15 rea lFd = system open ( system path ) ;
16 i f ( rea lFd == −1) {
17 s imu errno = system errno ;
18 re turn −1;
19 }
20 // update the f i l e d e s c r i p t o r t a b l e
21 current−>openF i l e s . add ( fd , rea lFd ) ;
22 re turn fd ;
23 }

Finally, select, poll, and epoll, also need special treatment: contrary to [15], we
implement them without performing active polling by assuming that all reads and writes
to real files are always ready and that they never introduce any delay in simulation time.
This decision is consistent with our focus on simulating network applications where I/O to
persistent storage often has little to no impact on the application’s behavior.

4.4.4 Time

The time-related functions provided by the standard C library are easy to re-implement:
instead of returning the wall-clock time, we return the simulation time after converting it
to the POSIX types such as time t.

4.4.5 UNIX signals

UNIX signals are often compared to software interrupts as a way to notify a process or
a thread of a specific event. When this event happens, the signal handler of the target
process or thread is invoked and, if a system call was underway, it is interrupted and
returns the EINTR error. By default, a handler is associated with each signal but signal

and sigaction can be used to set arbitrary functions as each signal’s handler. Since most
of the sources of events are either irrelevant to a network application or are impossible to
control outside of the kernel, the set of UNIX signals we can and need to manage, generate,
and handle properly is very limited. Specifically, the only signal we attempt to deal with
properly is SIGALRM which is generated whenever the timer started by setitimer expires.

A lot of networking applications use setitimer to ensure that they do not end up being
blocked forever in a system call, waiting for remote data which will never arrive because a
truck did cut a backbone optic fiber while digging for a sewage tunnel: when SIGALRM is
delivered to the application, it interrupts the system call the application was blocked on
which allows this application to continue its execution properly if it handles the associated
reported EINTR error.

To make sure that the above-mentioned applications would work correctly when simu-
lated, we provide an implementation of the signal handler management functions (signal,
and, sigaction). We also reviewed all the functions which can be interrupted by a signal
delivery (that is, every blocking function) to make sure that they perform signal delivery
first and then return EINTR.
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The former is fairly trivial since both functions merely need to update the list of signal
handlers of the current process. The latter, however, is a long and error-prone process
because we need to ensure that every replacement function we implement correctly returns
EINTR when a call to TaskManager::Sleep returns if and only if a signal is pending, this
signal is not masked, and the function has not already performed a short read or write.

4.4.6 Application Binary Interface compatibility

Although this was not an explicitly-stated hard requirement, the Linux user space em-
ulation environment discussed here attempts to be ABI-compatible with the host Linux
environment so that the same protocol implementation binary file can be run unmodified
both on the host system and within the simulation.

While most of the problems related to binary compatibility are easily handled auto-
matically by the compiler for us (it needs to use the same function calling and register
allocation conventions, etc), this requirement introduces two major constraints:

1. The ns-3 implementation needs to provide API data structures whose size is exactly
that of the host system.

2. The ns-3 replacement libraries must provide the same ELF symbol versions [9] as
those provided by the host system C library to allow the dynamic loader to resolve
function and global variable symbols correctly.

To illustrate the former constraint, we consider the case of the pthread mutex lock

function and the associated pthread mutex t data structure. The ns-3 implementation of
this function needs to store its mutex data in a data structure whose size is no larger than
the size used by the host system pthread mutex t. To do so, ns-3 requires the host data
structures to be bigger than 2 bytes (it is). It then stores in its first two bytes an integer
handle used to search the list of Mutex structures stored in the current Process structure.

The latter constraint might seem impossible to fulfill at first because it might require us
to implement all the versions of the same symbol provided by the GNU C standard library.
However, the old versions of a symbol are here only for backward compatibility with old
binaries that were not compiled for the host system. On standard Linux distributions,
every library is always recompiled so that it does not reference the old symbols. We thus
merely need to provide an implementation of the last version of each symbol. To do so,
though, we need to find the version name of the last version of each symbol which changes
from one Linux distribution to the other because they use different versions of the GNU
C library. It is thus not possible to hardcode in our standard C library implementation
the set of symbol version names and we have to extract that information from the host
system ns-3 runs on before we can compile our simulation system libraries with a version
description file appropriate for that host.
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4.4.7 Summary

Others such as [18, 15, 11] have implemented replacement libraries for the host system
libraries. However, none of these were ever made available for others to build upon and
create a really useful robust DCE environment. In this section, we have described the
implementation provided by ns-3 and we have attempted to highlight the considerable
complexity involved in making this implementation truly robust and usable on a large
range of systems. While this library is still incomplete from the perspective of replacing
all the functionality provided by normal system libraries, its functionality coverage will
increase over time and we believe that its current scope and the breadth already sets it
apart from other similar attempts.

4.5 The Linux kernel space emulation environment

Although the user space emulation environment described in previous section is sufficiently
faithful to be able to run any user space protocol implementation once the needed missing
wrapper functions are added, many users are interested instead in integrating within the
simulator a kernel space protocol implementation such as a TCP/IP stack. Integrating the
Linux kernel space network stack directly within ns-3 is thus a convenient way to increase
even further the usefulness and the realism of the ns-3 DCE environment.

Doing so makes it also easier to integrate user space network applications that make use
of more or less obscure Linux facilities. For example, the netlink socket implementation
provided by the ns-3 user space DCE environment to allow Linux routing daemons to
access the IP configuration of the ns-3 native stack is not needed when we use instead the
Linux network stack.

In this section, we discuss the implementation of a Linux kernel emulation layer which
allows us to reuse a completely un-modified Linux kernel network stack within ns-3 and
replace its native TCP/IP stack. Our implementation departs from other similar attempts
[22, 19] in that it focuses on automating completely the integration to avoid any modifi-
cation to the linux kernel source tree. We have been using this approach for more than
two months to track the fast-moving davem/net-next-2.6 Linux kernel source tree which
contains the network stack patches intended for the upcoming kernel stable release and
had minimal work to do to maintain this port. Over time, we expect that, as we increase
the scope of our testing strategy, and as our implementation of the kernel programming
interfaces improves, the amount of changes needed to keep up with the latest version of
the kernel network stack will decrease and eventually drop to zero.

4.5.1 Implementation overview

The diagram shown in figure 4.6 gives a high-level perspective of a Linux kernel network
stack running inside ns-3: applications which try to send or receive packets must call a
socket function at the top of the network stack. Packets travel in the network stack until
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Figure 4.6: The Linux network stack running inside ns-3

they reach a fake kernel net device which shields the real simulation NetDevice class
from the kernel and acts as the glue between them.

Because we had no a-priori experience with the Linux kernel infrastructure other than
a decent understanding of how its network stack worked, we developed the first version
of these kernel wrappers incrementally by compiling and linking together all the source
files from the net directory, and then trying to figure out which core kernel facilities were
called by the network stack and how they could be re-implemented within a simulation en-
vironment. A lot of these facilities could be trivially replaced by empty stubs because they
would not be actually called during a simulation or because our simulation environment is
simplistic and does not need to deal with facilities such as the kernel security hooks, etc.

A few other facilities were also trivially re-implemented: this was the case for the
kernel memory management primitives that were entirely replaced with simple functions
that allocate memory from a pool of memory managed with [21]. This was also the case
for the random number generation facilities which were forwarded to the simulator random
number generator. The printk family of functions underwent a similar treatment. A few
issues were more complex: they are thus detailed further in the following sections.

4.5.2 Build and Configuration system

Building and linking the source code present in the net directory seemed at first trivial.
However, it proved to be very challenging because the order in which the files are linked is
critical to ensure that their initialization functions are executed in the right order when we
load them in memory and because the set of files to build depends on the set of configuration
options used to configure the kernel.

The solution we chose at first was very simple: we created a static configuration of the
kernel source tree and we wrote a parser to scan the kernel Makefiles to infer the linking
order of the object files generated during the build. However, we eventually learned the
futility of this approach when we tried to upgrade our port to the latest version of the kernel
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development source tree: new configuration options had appeared, some had changed, were
removed which made our old static configuration invalid. The kernel Makefile structure
had also slightly changed and broke our parser. This forced us to:

• provide instead a valid Kconfig file to the kernel so that the normal kernel tools
such as make menuconfig, make defconfig could be used to generate a default
configuration and modify it easily as needed.

• build the entire kernel source tree with a fake Makefile that prints in the standard
output stream a set of make rules later used to actually build a core kernel library
and all the associated kernel modules.

So far, our experience with this machinery has been very positive: even though we tracked
constantly the kernel development tree for more than two months, we have not had to
upgrade our build and configuration system.

4.5.3 Timers and Time management

The Linux kernel management of time is based on the use of the global jiffies variable
which contains a 32bit integer that reports the number of ticks elapsed since the boot of
the kernel. The duration of each tick depends on the way the kernel was configured but
nowadays, it is usually configured to be one millisecond. The jiffies variable is normally
increased whenever the kernel timer interrupt is triggered. This timer interrupt is also
responsible for executing any expired kernel timers every ten millisecond, etc.

[22, 19] both deal with this by executing periodically a per-node event that increases
the jiffies variable and relies on the Linux kernel code to deal with its internal timers. This
approach suffers sadly from one major drawback: even if there are no timers scheduled to
expire for the next 10 or 80 milliseconds, the simulation will keep running and executing
events, just for the sake of incrementally increasing the value of this jiffies variable.
Rather than waste time to do this, we instead configure the Linux kernel to not use periodic
ticks with CONFIG NOHZ and then replace entirely the kernel timer facility to schedule
simulation events for each kernel timer instead of keeping track of the kernel events in a
data structure separate from the main simulation event list. The resulting kernel network
stack thus runs in tickless mode and does not waste time scheduling unnecessary events.

4.5.4 Read Copy Update and process scheduling

Read Copy Update (RCU) [26] is a synchronization algorithm used to control access to
data structures shared by different processors on Shared Memory Multi Processor (SMMP)
systems. It is used in the Linux kernel to efficiently manage a number of shared data
structures and is based on the idea of that shared objects are never directly modified.
Instead, when a part of the kernel needs to modify some RCU-protected shared data, it
first creates a copy of the data, modifies safely this local copy, and then only updates
atomically the pointer to the shared data to point to the new version of the data structure.
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The old version of the shared data structure is kept around and is deleted only when it
can be proven that no other processor is using it. This algorithm relies on the detection
of quiescent states to infer when it is safe to delete the old versions of the data structure.
Each OS where this algorithm is used defines the quiescent states differently but [26]
summarizes the choices made by the Linux kernel and points out, among others, that
context switching is a quiescent state which means that the Linux kernel scheduler notifies
the RCU implementation of every context switch to allow this implementation to invoke
the appropriate deletion functions for old shared data structures.

The ns-3 kernel emulation wrappers replace the Linux kernel scheduler by the simu-
lation task scheduler described in section 4.4.1 which means that they also need to be
instrumented to notify RCU of the quiescent states. Failing to do so results in hard-to-
debug deadlocks triggered by the inability of RCU to detect that it can wake up RCU
users.

4.5.5 Support for /proc/sys/

On normal Linux systems, most kernel-level parameters such as the type of TCP congestion
control algorithm can be changed at runtime by writing data in a set of magic files located
in /proc/sys: the data we write in this so-called sysctl file system goes through the kernel
file system layer until it reaches a function that knows how to convert the user string into
a value that can be set in a kernel variable. A simple way to allow our users to do the same
in our DCE would have been to include the whole kernel file system layer together with its
proc file system. This would have led to a large cascading increase in the size of the kernel
image together with considerably more complexity to provide simulation implementations
for core kernel primitives.

Instead of pulling in the entire kernel file system layer, we thus merely compile in our
kernel image the sysctl support from kernel/sysctl.c and then, we parse directly at
runtime its underlying root ctl table data structures to enumerate the hierarchical tree
of parameters and to invoke the right conversion function when the user attempts to set
one of them.

4.5.6 Summary

Contrary to previous attempts [19, 22], the implementation of a kernel space DCE en-
vironment for the latest version of the Linux kernel we describe in this section has been
successful in avoiding any change (except for a one-line modification of the kernel slab.h
header) to the entire network stack and kernel tree and has shown its ability to resist the
high rate of changes seen in the mainstream Linux kernel source tree.

While the current implementation temporarily lacks support for dynamic loading of ker-
nel modules to maximize flexibility and requires users to instead reconfigure and recompile
their Linux network stack to enable or disable various protocol modules, it has been able in
its present form to provide a surprisingly robust and transparent replacement for the ns-3
TCP/IP stack. The memory and CPU overhead introduced by this replacement network
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stack will be discussed in next section but the many new features it provides over the
native ns-3 stack make it mandatory in many cases: when IP fragmentation and reassem-
bly, IPv4 and IPv6 tunneling, Stream Control Transmission Protocol (SCTP), Datagram
Congestion Control Protocol (DCCP), bridging, or one of the many queuing disciplines
already implemented in the Linux network stack need to be simulated, this kernel space
DCE environment is the only solution available presently to ns-3 users.

4.6 Performance evaluation

When they discover the DCE environment described in this chapter, the first question most
users ask is how many nodes can I run? In general, though, this is not the question they
really want to ask: usually, they merely want to know if they can use these models with
network topologies and traffic workloads that are typical to their area of expertise. Their
need for simulations that span long time intervals and their tolerance for long simulation
execution times vary a lot from a domain area to another and from one researcher to
another. Furthermore, the answer depends on the kind of hardware platform they can use,
how much memory it has, and whether its CPU is recent or not.

In this section, we try to answer instead two other related more specific questions:

• What is the CPU and memory overhead introduced by the use of these real-world
protocol implementations compared to simpler simulation-only models?

• Once we run a simulation which contains only real-world protocol implementations,
how does it compare in terms of scalability and performance with a simple testbed
which uses the same protocol implementations ?

4.6.1 User space and kernel space DCE overhead

To investigate the first question, we consider again the arbitrary network topology and
traffic pattern described in 4.3.3: we instantiate this scenario with different simulation
models to illustrate their relative CPU and memory efficiency. Figure 4.7 gives a high-level
overview of the first three experiments considered:

• dce-none (figure 4.7a): this simulation uses the native ns-3 UDP/IP stack and native
OnOffApplication traffic generator to match the generation pattern described in
section 4.3.3,

• dce-user (figure 4.7b): the OnOffApplication is replaced by udp-perf and the user
space DCE environment.

• dce-user+kernel (figure 4.7c): the OnOffApplication is replaced by udp-perf and
the user space DCE environment while the native ns-3 UDP/IP stack is replaced by
the kernel space DCE environment for the Linux network stack.
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Figure 4.7: Simulation scenario description to compare the overhead of the user space and
kernel space DCE environments

Figures 4.8a and 4.8b reports the average number of packets processed in each experi-
ment per wall clock second and average memory usage after the protocol implementations
are loaded for ten simulation runs with the associated 95% confidence interval. One should
note that these confidence intervals are in general invisible, because they are too small.
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Figure 4.8: The overhead of the DCE user space and kernel space environments

Unsurprisingly, figures 4.8a and 4.8b confirm that user space and kernel space DCE
environments both contribute significant CPU and memory overhead: a simulation which
integrates both processes down to two times less packets per wall clock second and consumes
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up to twenty times more memory.

4.6.2 Comparison with a testbed

To answer the second question, we consider a testbed based on the Linux network names-
pace container virtualization technology, NetNs. In next chapter, we describe a testbed
based on this lightweight technology which makes it easy to create on the same physical
host multiple network stacks and to interconnect these virtual network stacks by kernel-
level emulated links. In this chapter, though, we conduct the simple experiment described
in figure 4.9. This figure illustrates netns, an experiment which attempts to mirror the
topology and traffic patterns setup in dce-user+kernel : a set of Linux NetNs network stacks
are interconnected by kernel-level point to point links. The application traffic is generated
again by udp-perf, it is processed by the virtualized network stacks, and the kernel-level
packet scheduling framework enforces a constant delay and bandwidth constraint on each
link.

Linux
 UDP/IP

Linux
UDP/IP

Linux
 UDP/IP

udp-perf udp-perf

veth veth veth veth

Bridge Bridge

tc tc tc tc

veth veth veth veth

Figure 4.9: An experiment based on Linux network namespaces.

Figure 4.10 reports the number of packets received per second on the right-most node
when increasing the transmission rate on the left-most node has no impact anymore on the
reception rate. This value represents the maximum number of packets that the testbed
system used in this experiment can process per wall clock second: it can be meaningfully
compared against the number of packets simulated per wall-clock second measured in
previous section and shown again in figure 4.10.

This figure suggests that while a simulation which integrates both kernel space and
user space protocol implementations is slower than the same experiment running directly
within the host Linux OS by a factor of two, the equivalent simulation using only native
simulation models is in fact faster by a slight margin than the kernel host Linux OS.

4.7 Conclusion

In this chapter, we have outlined one of the strategies that can be used to increase the
realism of a network simulator such as ns-3 by integrating protocol implementations de-
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Figure 4.10: Packets per second processed by simulation vs by testbed

signed to run on real systems. Specifically, we have shown that the use of a simple ELF
dynamic loader together with replacement libraries for the Linux user space environment
and the kernel space runtime environment is sufficient to allow the Direct Code Execution
of unmodified user space and kernel space protocol implementations. In the case of user-
space protocol implementations, we have gone as far as showing that the same application
binary can run both standalone on the host system to be used in a testbed or directly
within the simulator. These three components combined together make it possible to eas-
ily and seamlessly switch back and forth between simulations and testbed experiments to
exploit the reproducibility and debuggability of a simulation together with the high degree
of realism of a testbed or a field experiment.

In some cases, though, users need to do more than switch easily between a field ex-
periment and a simulation: they need to be able to use both at the same time within the
same experiment to extend even further the scope in terms of realism of their simulation
while retaining its strong reproducibility characteristics. However, trying to mix together
a simulation with a more realistic testbed introduces a host of new issues which we discuss
in the next chapter.
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In previous chapters, we have shown how simulation tools can be used to cover a large
range of experimentation needs: when the native ns-3 models are not sufficiently faithful
to the real world or when they do not implement certain protocol features, real protocol
implementations can be embedded within the simulator, hence greatly extending its scope
in terms of realism without any impact on reproducibility or debuggability.

However, in general, there are always certain characteristics of the real system which
will not be taken into account by a simulator. When this happens, users turn to small-
scale deployments or field experiments to obtain more realistic data about the behavior of
their protocol in the wild. Sometimes, though, the monetary cost of these very realistic
experiments, their higher variability and their lack of scalability contribute to make such
experiments impractical.

For example, the delays introduced by packet processing overhead are rarely modeled in
typical simulators: a user who intends to investigate the impact of the TCP/IP processing
delays on application-level traffic over wireless links will be hard pressed to find a testbed
platform with both accurate processing delay characteristics and reproducible wireless
links. What is really needed in this case is an experimentation platform which provides
the best of both worlds: reproducible wireless simulations together with accurate processing
delays from the real world.

Another experiment which could benefit from a mix between simulation and the real
world is a deployment of a set of real-time simulations over PlanetLab to obtain internet-
style background traffic conditions for the traffic generated by the simulators running on
each PlanetLab node. If the PlanetLab nodes are sufficiently powerful CPU-wise, each
simulation running on PlanetLab could be used to simulate tens of nodes, hence greatly
extending the scale in terms of number of nodes of the experiment without giving up on
its internet-style background traffic conditions.

While these scenarios are simple to state, it is hard to make them come true: in both
cases, the complexity of deploying, and configuring correctly these experiments put them
out of reach of most experimenters since few of them can afford the time necessary to set
them up.

In this chapter, we focus on the problem of simplifying the description and deployment
of mixed network experiments which involve a combination of two or more of a simulation,
a testbed and a field experiment. Specifically, we demonstrate the feasibility of automating
entirely the configuration and deployment of the network and application level aspects of
these experiments through the use of a unified experiment description scheme which relies
on a box/connector object model. Because we have finite development resources it would
be impossible to implement support for every experimentation tool in existence today. We
thus arbitrarily chose to consider mixed experiments which involve the ns-3 simulator and
the NetNs virtualization technology because of our familiarity with their inner workings.

In section 5.1, we present the limitations of the rare projects which have attempted
to solve similar problems. Then, in section 5.2, we illustrate through an realistic example
how painful setting up manually such a mixed experiment can be. Because automating
the setup and deployment of these experiments requires global knowledge of their topology
and configuration, section 5.3 introduces the object model defined by Nepi which can be
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used to describe the network-level as well as the application-level aspects of a network
experiment that spans multiple experimentation tools.

5.1 Related work

While there are many network experimentation tools out in the wild, each with its own
peculiarities and features, few of them really attempt to provide a solution to the prob-
lem we are interested in, that is, use a single experiment description to automate the
network-level and application-level deployment and configuration across multiple indepen-
dent experimentation platforms.

5.1.1 Distributed systems

Tools such as Splay [12] and Plush [5] are grounded in distributed systems research and
thus are mostly focused on automating the deployment of applications, regardless of the
underlying network topology.

Splay abstracts the transport layer behind a dedicated runtime library and ad hoc
language. Distributed applications which are written to work within the Splay runtime
can be automatically deployed on network experimentation platforms such as PlanetLab
[6], ModelNet [14], Emulab [15] or arbitrary computing clusters. Similarly, Plush [5] and its
followup project Gush [4] act as a wrapper on top of a set of computing resources allocated
separately.

While projects such as these make it easy to deploy the same application on various
experimentation platforms, they provide no control over the description and specification
of a network topology and thus cannot take care of setting them up if needed.

5.1.2 MyPlC

The CoreLab [1], OneLab [3], PlanetLab [6] projects and their many offspring such as
VINI [7] are all derived from the same MyPlC codebase: they control a set of internet-
connected hosts on which any number of independent virtual environments denoted slivers
can be created to host user-deployed applications. These testbeds are typically used to
test internet services against internet-style background traffic and churn.

While it is easy to describe and automate the allocation of a set of slivers, these testbeds
provide no support for application deployment and instead rely on tools such as Splay and
Plush to fill in this gap. A typical experiment conducted over PlanetLab is thus usually
a two-step process: first, the experimenter needs to describe and allocate a set of network
resources, and then, he needs to deploy separately his application over these resources.
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5.1.3 ModelNet

ModelNet testbeds allow the experimenter to describe a fine-grained network topology
which is emulated by a set of Linux kernel-level software components. This emulated
network topology is then used to interconnect a set of virtual machines on which user
applications can be run. Rather than confront the user application with internet-style
background traffic as in PlanetLab, ModelNet instead attempts to model the characteristics
of its routers with no background traffic.

The user model offered by ModelNet [14] is very similar to that of the MyPlC derivatives
discussed above and relies again on third party tools to automate the deployment of user
applications over the ModelNet-controlled network topology.

5.1.4 OMF

cOntrol and Management Framework (OMF) [2], slowly evolved over the years from a
tool used to describe, deploy, and collect the results of an experiment within the ORBIT
[13] testbed to a more versatile and generic solution, able to deploy the same experiment
description either on PlanetLab through its Slice Facility Architecture (SFA) [11] reserva-
tion mechanism or on an OMF-controlled testbed. An OMF experiment is described in a
script which is responsible for allocating, and setting up both the network-level and the
application-level elements of the experiment.

While OMF is unable to automate the deployment of a mixed experiment that involves
two testbeds at the same time, it nonetheless stands out in stark contrast to the other
experimentation tools discussed so far since it provides control over both the experiment
network topology and the application deployment.

5.1.5 Emulab

Emulab [15] is similar to OMF in terms of scope and functionality: its experiment control
tools allow the description of a network topology and the automated deployment of ap-
plications over this topology. Emulab can control access to many very different types of
network resources: from virtual machines with kernel-level emulated network links, to real
hardware systems. Although its experiment description and control facility is very flexible
and can be used with profit to describe and automate the deployment of both the network
and application aspects of an experiment over these many different experimentation fa-
cilities, Emulab requires new experimentation testbeds to be integrated within its control
framework which makes it hard to reuse a testbed that is not already part of Emulab.

5.1.6 Summary

Table 5.1 attempts to provide a high-level summary of the features found in existing exper-
imentation tools. The application deployment capability refers to the ability of automating
the application deployment while the network topology capability refers to the ability of



5.2. USECASE 109

application deployment network topology

Plush X
Splay X
MyPlC X
ModelNet X
VINI X
OMF X X
Emulab X X

Table 5.1: Capabilities of select experimentation tools

automating the setup of the network topology needed for the experiment. Because these
two capabilities are fairly complementary, most tools provide only one and rely on other
tools to provide the missing piece. However, this lack of integration means that many tasks
that require a global view of every layer of an experiment cannot be easily automated and
this is why OMF and Emulab both attempt to deal with both aspects of the experiment
description and deployment.

However, both OMF and Emulab also require that every resource used in an exper-
iment be under the control of their own management layer which makes it hard to use
transparently new experimentation tools which are under the control of another manage-
ment system. Nepi was built as an answer to that specific challenge: that of providing
a uniform API to describe and deploy automatically experimentation resources located in
physically distinct testbeds under the control of administratively independent entities.

5.2 Usecase

While the problem of using together a simulation with a testbed or a field test is common
to every user who needs to combine the reproducibility inherent to the former with the
realism provided by the latter, we consider in this section one specific example and we
attempt to illustrate through this concrete example the considerable pain involved in its
manual setup.

From a high-level perspective, the experiment topology we deal with here can be ac-
curately summarized by figure 5.1: this scenario depicts a video data server located in a
data center accessed by a set of video clients through a Worldwide Interoperability for Mi-
crowave Access (WIMAX) BS/SS access network. The video client and video server nodes
use a virtualized network stack to execute a set of video client/server software instances
while the boxes surrounded by light grey simulate the WIMAX access network. The net-
work stack is virtualized with the Network Namespace (NetNs) lightweight virtualization
technology. The WIMAX links are simulated with ns-3 to take advantage of its native
native WIMAX models [8, 9], real-time scheduler and packet conversion capabilities.



110 CHAPTER 5. NEPI: AN EXPERIMENTATION FRAMEWORK
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Figure 5.1: A set of virtualized network stacks interconnected by a simulated WIMAX link

5.2.1 Tap device

The scenario described above relies heavily on the continuous exchange of packets between
kernel-level network stacks and an application to simulate the layer 2 links. In chapter 3,
we presented the ns-3 facility used to convert the real network packets to and from the
simulation packet objects but this is not enough to setup a true communication channel
between a simulator and a kernel network stack.

In this case, we need to extract outgoing network packets from the bottom of the kernel
network stack, insert them at the bottom of the simulated network stack, and vice versa.
Figure 5.2a illustrates this process when it is implemented by a tap net device. When
an application needs to exchange packets with the kernel, it opens the special /dev/tun
file and performs a special ioctl on it to request the creation of a new tap device. The
ioctl system call returns a new file descriptor which can then be used to manipulate
the content of the transmission and reception packet queues of the tap device from the
application: whenever the kernel sends a packet out through the tap device, it is enqueued
at the back of its transmission queue and whenever the application reads from its file
descriptor, it removes a packet from the front of the transmission queue. In the other
direction, when the application writes in the file descriptor, the packet is enqueued at the
back of the reception queue which is then later processed by the kernel at the next available
opportunity to send it up the network stack.

5.2.2 FileDescriptorNetDevice

Once the packets are extracted from a tap device and have been received in a userspace
application, they need to be injected in and extracted out of an ns-3 simulation to model
the wireless links we are interested in. The FileDescriptorNetDevice (pictured in fig-
ure 5.2b is a NetDevice which was designed to work together with the tap device de-
scribed above and accomplishes the mirror operation within ns-3. Once it is created, the
FileDescriptorNetDevice waits for someone to create a tap device and hand out the
associated file descriptor. Later on, any attempt by the ns-3 network stack to transmit a
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packet on a FileDescriptorNetDevice is converted in a call to write on the associated
file descriptor while a background thread reads packets from the file descriptor and queues
them for reception on the FileDescriptorNetDevice.

5.2.3 Network Namespaces

To allow multiple instances of the host OS network stack to co-exist on the same machine,
we rely here on the use of the Linux NetNs virtualization technology: rather than run
the entire OS within a platform-level virtual machine, the Linux kernel network stack
was modified to indirect every access to a global variable through an extra namespace
pointer. Each socket, process, and kernel net device hold a reference to the namespace
they belong to so that whenever a packet is received at the bottom of the network stack
through a net device or at the top of the network stack through a socket, the kernel
knows which instance of the network stack it should access to lookup the IP routing table,
etc.

By default, a normal Linux system contains only one network namespace so that every
process, socket, and net device accesses the same network stack variables. The unshare

system call can be used to create a new network namespace and to move the calling process
to this network namespace. It is then possible to move an existing net device to the new
namespace, to create new processes in this namespace by asking the initial process to
fork/exec a new one, and to create sockets within this namespace by creating them from
any process which belongs to this namespace. When the last process which belongs to a
specific namespace exits, the namespace is destroyed by the kernel and any net device

still present in the namespace is either destroyed or comes back to the main namespace.

Since it is impossible to move an existing process to an existing namespace, executing a
command in a specific namespace requires the use of a command server which lives in each
namespace and an ad hoc communication protocol to request the execution of commands
on behalf of the message sender. Figure 5.3 illustrates the creation of a namespace and the
creation of a bidirectional communication channel to control the execution of a command
in that namespace.
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Figure 5.3: The main namespace creates a new namespace.

5.2.4 Interconnection setup

To put together a complete experiment (see figure 5.4) from the individual components
described above, a user would need to perform many tasks:

• First, create a set of network namespaces for the video server and client software.

• Then, create a set of tap net device and move one of them to each network names-
pace

• Start a real-time simulation which simulates the WIMAX link and contains one
FileDescriptorNetDevice for each tap net device

• Communicate the file descriptor of each tap net device to the matching
FileDescriptorNetDevice

• Assign IP addresses to the tap net devices located in the namespaces, and the
FileDescriptorNetDevice, WIMAX base station and subscriber station devices.

• Setup the IP forwarding tables of the network namespaces and those of the simulation
IP stack

5.2.5 Summary

There is clearly nothing impossible about the set of steps presented above but, in practice,
they are extremely error-prone because they require a thorough understanding of the in-
teraction between the simulation and the network namespaces running on the host. Most
users who attempt to conduct this experiment will spend countless hours to figure out
how to make sure that each FileDescriptorNetDevice is assigned the right matching file
descriptor to exchange data with the OS tap net device or to track down which IP stack
has been mis-configured.
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Figure 5.4: Experiment setup

The key problem in this case is that knowledge about the experiment topology is
split between different scripts, written in different languages, using different programming
interfaces, and this is what makes it impossible to automate the global assignment of IP
addresses, the configuration of the associated IP forwarding tables, or to ensure that the
tap net device is interconnected with the right simulation device.

5.3 A unified object model for network experimenta-

tion

To address the problem described above, the most obvious solution is to centralize in a
single script the description of the entire experiment and to use this unified description to
automate the configuration steps described in 5.2.4. In this section, we present the Nepi
programming interface abstraction which we have been using successfully to describe and
automate the setup and deployment of both the simulation and the network namespace
aspects of the experiment discussed in previous section.

5.3.1 The NEPI framework

Nepi is a python library which provides access to a set of back-ends that export the same
programming interface to the user. As outlined in Figure 5.5, it is possible to interact
with Nepi by writing a python script or by using the Network Experimentation Frontend
(Nef) user interface.

The programming interface is accessed through an entity called a Controller, which
runs and monitors experiments. The Controller can be the same process or an indepen-
dent process on a possibly remote computer, allowing the user to detach and reattach to a
running experiment.

Another important concept in the framework is that of a Server: it represents a back-
end instance, such as an ns-3 process or an Emulab boss. The Server is the gateway that
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Figure 5.5: nepi architecture

provides for the deployment of the experiment.

The Experiment object is responsible for keeping track of the description of an exper-
iment and the set of servers which will execute certain subsets of the experiment. In the
case of the video/client server example described in 5.2, the Experiment object would keep
track of two server objects: the ns-3 server would represent the ns-3 process responsible
for simulating the WIMAX access network while the NetNs server would represent the set
of network namespaces created on a host which encapsulate the video clients and video
server. To facilitate the management of multiple experiments or conduct the same experi-
ment multiple times, the Experiment object can also be used to serialize and de-serialize
an experiment description to/from XML files.

5.3.2 The box metaphor

The description of an experiment in Nepi is based on the box metaphor: each box repre-
sents a separate functional unit connected to other functional units/boxes through named
ports. By using named ports, relationships between boxes gain semantic value that is
useful both for the user and the implementation. Users familiar with IC design or board
layout tools will feel immediately at ease with this model.

An experiment within a testbed can be modeled by a set of interconnected testbed-
specific functional units, each of which is described by a set of specific attributes. Different
testbeds provide different kinds of functional units with different attributes but the pro-
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gramming interface used to connect together a port within a functional unit to another
port within another functional unit is the same for every back-end.

5.3.3 A concrete example

To illustrate how the box metaphor can be used to model a typical network experiment, we
consider again the video client/server example described previously. Figure 5.6 contains
an abstract representation of a small subset of this experiment.
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ns3::Ipv4
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WimaxChannel

SSNetDevice ns3::Node

ns3::Ipv4
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node fd
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Figure 5.6: Video client/server usecase

This example highlights two important properties of the modeling methodology adopted
here:

• Each backend (the ns-3 backend and the network namespace backend) exports boxes
which have different semantics and different levels of abstraction: an ns-3 node does
not contain an IP stack unless it is connected to the Ipv4 box while a network
namespace node encapsulates the entire TCP/IP stack of the Linux kernel.

• The semantics of each connection between a pair of ports vary depending on the
two objects connected and the ports they are connected through. In some cases, a
connection represents merely a function call to associate two C++ objects together
(the ns3::Node/ns3::Ipv4 connection for example) but in other cases, the connec-
tion represents a set of actions which need to be performed in a certain order to
setup a set of unrelated objects (the Tap/FileDescriptorNetDevice connection for
example).

The ns-3 and the network namespace backends shipped with Nepi take advantage of
these two properties to export one Nepi box per functional unit that is accessible in the
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underlying tool. In the case of ns-3, every ns-3 object is exported as a Nepi box while in the
case of the Linux network namespaces, since the kernel gives only control over the creation
of an entire TCP/IP stack, this is the only functional unit exported as the NetNsNode.

5.3.4 Box composition

While the flexibility that is granted to backend implementors to chose the granularity of
the functional units they can export to their users through Nepi facilitates their imple-
mentation task considerably, from the perspective of a user, it can make it fairly painful
to describe a complex experiment.

In the case of the ns-3 backend, for example, describing the set of objects which are
needed to run successfully a WIMAX simulation can be daunting: the illustrative diagram
shown in figure 5.6 only scratched the surface of what would have been needed to describe
our video client/server example. To make the diagram readable, we removed the mobility
models which are needed by the WIMAX channel path loss model, we also removed the
path loss model description, and various other important functional units.

In general, users thus need the ability to hide these complex low-level configuration
details until they really need to change them. Each Nepi box is, of course, created with
a set of default values for all its configuration attributes but what is needed here is the
ability to create a set of objects in a certain state by default instead of creating one object
in a default state.

The natural way to handle this issue with the box model chosen by Nepi is to extend
it to support hierarchical composition of boxes so that one composite box contains an
arbitrary number of internal primitive or composite boxes. Nepi supports this by allowing
the user to define libraries of composite boxes. These composite boxes can be, of course, un-
boxed to allow access to their internal objects for configuration purposes but, in practice,
we have observed that our early users rarely do this.

5.3.5 IP configuration

If we go back to the example described in 5.2, it should be clear that the box model pre-
sented here provides sufficient information to solve some but not all of the automation ob-
jectives we set out to solve. For example, the existence of the triplet Tap, FileDescriptorNetDevice
and tap-device connection is sufficient to automate the creation of the kernel tap net device,
the ns-3 device object, and the exchange of the communication file descriptor between the
tap net device and the ns-3 device. However, none of the abstractions we have discussed
so far provide any clue to Nepi about the IP-level topology of the experiment, hence mak-
ing it problematic to automate the assignment of IP addresses to network interfaces and
the configuration of the IP forwarding tables in each experiment node.

To deal with this issue, Nepi requires every backend to provide for each box it exports a
way to identify its local IP topology. The topology object associated with each box is then
queried at runtime before starting the user experiment to construct a global description of
the experiment IP topology. Once constructed, this topology description is finally parsed
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to assign one IP address per network interface and to configure the associated forwarding
tables. The algorithm used to assign IP addresses is currently naive and inefficient since
it simply allocates consecutive IP addresses and thus requires n entries in each forwarding
table (where n is the number of network interfaces in the entire experiment) but we plan
to integrate in the future more efficient alternatives such as [10].

Deferring the assignment of IP addresses to this late stage of the experiment setup
means, however, that it is not possible anymore to use IP addresses to specify communica-
tion endpoints. Say, if we create a Ping box and connect it to one of the node boxes of our
experiment to specify where the ping program should run, we are now unable to specify
the destination IP address of the associated Internet Control Message Protocol (ICMP)
echo request because we do not know which IP address will be assigned to the remote node
we intend to ping.

In Emulab, the boss server addresses this problem by dynamically creating a set of
Domain Name System (DNS) entries which can be used to identify each host deployed in
an experiment. In the case of Nepi, this method is hard to implement because it would
require each backend (including simulation backends) to be able to deploy automatically a
DNS server within each experiment. Instead, Nepi adopts a simpler approach: it associates
with each entity visible within the IP topology a unique hierarchical string description and
converts these string descriptions to actual IP addresses once the IP address assignment
has been completed, hence allowing users to alias IP addresses with these strings.

5.4 Summary

Although Nepi is still a work in progress because it lacks support for PlanetLab, Mod-
elNet, or EmuLab backends and because it has, so far, received little testing outside of
the tighly-knit group of researchers within the Planete team, it has been successful at
solving the problem we set out to address. Specifically, we believe that it has demon-
strated the feasibility of automating entirely a number of tasks which usually need to be
conducted manually, hence greatly facilitating the description, and deployment of network
experiments based on a mix of simulation, field experiments and testbeds.
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Over the past few chapters, we have invested a lot of effort to describe our work and
contributions as a sequence of logical steps in an attempt to facilitate your reading expe-
rience.

However, the daily life of a researcher is usually closer to the mess of a spaghetti plate
than a beautiful mathematical demonstration. In this last chapter, before closing this
thesis with some of the open questions we would like to pursue further in the future, we
would like to take the opportunity to go back in time and recollect nostalgically the path
that led here.

6.1 Recollections

A few years ago, when we started along the path of a Ph.D thesis, we did not really intend
to work on tools for network research experimentation. Instead, we were initially focused
on the problem of extracting useful topological information out of a live network without
impacting its behavior and we were quickly faced with the problem of figuring out how we
could assess the correct behavior and efficiency of any topology measurement protocol we
could come up with.

Within a couple of months, we got sidetracked by this secondary issue and started the
development of the prototype network simulator Yans with an eye towards implement-
ing a DCE framework that could be used to host our new measurement protocols before
deployment in the real world.

In hindsight, it is pretty clear that we could have pursued our initial research objective
by implementing our protocols not once but as many times as needed to test them in differ-
ent environments but the alluring potential of being able to reuse the same implementation
within simulations and testbeds steered us away long enough to meet the ns-3 team and
give up definitively any pretense of doing real network research.

Instead, we then pursued two major objectives: first, we invested considerable devel-
opment time and resources in the development of the ns-3 simulator itself. We ported
our event scheduler, IP stack and wireless models from Yans, implemented the ns-3 ob-
ject model, attribute system, and tracing infrastructure. Finally, we rewrote entirely the
packet class found in Yans to support transparent pretty-printing, flexible tagging, and
more efficient operation memory and CPU-wise.

In parallel to these low-level software infrastructure facilities, we started the develop-
ment of what became later the ns-3 DCE framework. It was based originally on a process
scheduler written for Yans and on a simple loader written during an eight-month stay at
the University of Washington within the Fundamentals of Networking Laboratory. It then
slowly but surely evolved to the more efficient dlmopen loader. It is only much later that
it gained its kernel space emulation support and its out of the box support for a variety of
user space routing daemons as well as the entire Linux kernel network stack.

About two years ago, when early versions of the ns-3 DCE environment became func-
tional, we started extensive testing and this is when we discovered the excruciating pain
involved in setting up mixed experiments that use a simulator and a testbed. This dis-
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covery led to the design of Nepi which was implemented by Martin Ferrari and Alina
Quereilhac.

6.2 Impact

While the road that led to this last chapter was bumpy and narrow, we believe that we were
still able to improve in a useful way the daily workflow of network research experimenters
through the addition of two new tools to their toolbox.

First and foremost, we believe that our contributions to the core infrastructure of ns-3
were partly instrumental to its success and its subsequent broad and large impact on the
network community.

Second, we expect that, as it continues to mature, and when it is distributed with ns-3
proper, the unusually large scope of the DCE framework will increase further the impact
of ns-3 on its users and the practice of network experimentation in research.

Finally, although it is harder to quantify the potential usefulness of Nepi on the network
research community at large, we have been using it internally with success and we believe
that the new range of experiments it enables could also have a wide impact beyond our
small research group.

6.3 Future work

One of the great side-effects of our long walk on the windy path we followed until now is
that we also discovered many potentially fun, interesting, and useful research directions
which we decided to leave behind to be able to finish this thesis. Now that we are done, it
is our hope that we will be able to investigate some of these problems further.

6.3.1 Distributed simulations

Although many time synchronization algorithms have been published and have been used
to implement distributed simulation runtimes for research purposes, real implementations
are usually very primitive and merely use some of the oldest conservative synchronization
algorithms.

However, whether these simulators provide conservative or optimistic algorithms, few
users appear to ever take advantage of these facilities when they are available because
doing so requires a complex manual static partitioning of the user network topology to the
available computing resources. The considerable technical expertise needed to create such
a static partition and obtain measurable speedups makes these tools anecdotic.

During a 2 month internship, Guillaume Seguin demonstrated that it is possible to take
advantage of the properties of SMMP systems to implement a thread-based conservative
time synchronization algorithm that is entirely transparent to the user and that exhibits
potentially interesting performance. His internship demonstrated the difficulty of man-
aging thread-safety in the core simulation engine and of making this thread-safe support
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transparent to model developers and users but it identified a number of solutions with a
prototype implementation. Since then, we have slowly integrated some of these changes
back in the main ns-3 distribution and we believe that it should now be possible to inves-
tigate further the problem of adding transparent support for multi-threaded simulation to
ns-3 and thus make these time synchronization algorithms more widely used.

Another potentially useful area of research involves extending this early work to sup-
port more advanced optimistic time synchronization algorithms in ns-3 with process-based
snapshots using fork. While there is a lot of literature on these algorithms, and they ap-
pear to have been studied a lot with synthetic simulation scenarios, we are not aware of any
practical implementation which can be used nowadays in production network simulators
and we believe that an implementation of a few classic optimistic time synchronization
algorithms would be invaluable to start a systematic analysis of the performance of these
algorithms on non-synthetic simulation scenarios.

6.3.2 Aspect-based tracing

In line with these concerns about the lack of usability of existing distributed simulators,
we noticed early on that while collecting traces about the behavior of a simulation is one
of the most important aspects of setting up a simulation, it conflicts directly with the idea
of integrating un-modified existing protocol implementations within the simulator through
a DCE framework.

In practice, we have observed that the users of our DCE framework quickly learn the
value of so-called printf tracing by inserting calls to this function or its C++ equivalent
in strategic locations of the source code and recompiling everything whenever they change.

A relatively widespread solution to this problem adopted notably by Java programmers
is to use Aspect Oriented Programming (AOP) to dynamically instrument a function of
interest and be notified whenever it is called or returns. This kind of technology is however
extremely complex to implement in C and C++ programs where there is no bytecode and
no rules about memory consistency or multi-threading. For example, Paradyn [2] has to
use multiple levels of trampolines, save and restore cpu registers by hand, and emulate the
execution of some assembly instructions to allow arbitrary probes to be inserted at any
time independently of the number of running threads. Sadly, neither Paradyn nor any of its
competitors such as Dtrace [1] or Systemtap [3] are widely available today. Furthermore,
they all use ad hoc languages to describe the location of all probes and to specify the
processing to perform within these probes: when they are available, they are thus fairly
cumbersome to use since all probe specifications and probe processing must be separate
from the simulation itself.

Hopefully, in the case of running a simulation within ns-3, it is possible to restrict
ourselves to a much simpler problem: we can assume that no probes will be inserted once
the simulation starts and that threads will be synchronized safely by other means (if there
are any). These simplifying assumptions make it possible to use a much simpler probe
insertion mechanism based on traps which was implemented within our DCE framework
and which allow us to insert a probe at arbitrary memory locations. However, to fully
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realize the potential of this facility, we also need to locate the right memory locations
dynamically based on a user description of the probe location. For example, if the user
asks for a probe at line 123 of file foo.cc, we need to retrieve in memory the position of
the first assembly instruction which was generated by the compiler for that line in this
file. Fortunately, the information necessary to calculate this mapping is already generated
automatically by the compiler and stored in the debugging information entries of the
executables and libraries it creates.

A promising approach to provide aspect-oriented programming in ns-3, and thus allow
the tracing of unmodified protocol implementations, would take advantage of these debug-
ging information entries in conjunction with the probe technique already implemented and
we are hopeful that a practical solution to this problem is within reach.
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Nef Network Experimentation Frontend. 113

Nepi Network Experimentation Programming Interface. i, iii, v, 106, 109, 113–117, 123

net device In the Linux kernel, the net device data structure represents a network card:
packets can be queued for transmission by the kernel and for reception by the hard-
ware. 110–113, 116

ABI Application Binary Interface: an ABI describes the low-level interface between an
application (or any type of) program and the operating system or another application.
ABIs cover details such as data type, size, and alignment; the calling convention,
which controls how functions’ arguments are passed and return values retrieved;
the system call numbers and how an application should make system calls to the
operating system. 77, 79, 83, 87, 92

AOP Aspect Oriented Programming. 33

API Application Programming Interface: an abstraction that describes an interface that
is exported by a program or library to be used by another program or library. 8, 16,
31, 53, 56, 64, 66, 73, 92, 109

ARP The Address Resolution Protocol (ARP) is used by the Internet Protocol version 4
(IPv4) to convert IPv4 addresses to MAC-level addresses. 36, 38

BGP Border Gateway Protocol. 70–73, 87

BS Base Station: a WIMAX term to designate the central static hub with which all
communication is performed. 109

BSD Berkeley Software Distribution: a UNIX Operating System which is a derivative of
the original AT&T UNIX Operating System. 73, 74

COW Copy-On-Write. 57, 59, 60, 63

CPU Central Processing Unit: the CPU is typically implemented in a single chip that is
responsible for executing the instructions of a computer program. iii, v, 8, 17, 20,
30, 44, 45, 51, 57, 63, 72, 74, 76, 78, 79, 82–86, 89, 96–98, 106, 122

127
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DCCP The Datagram Congestion Control Protocol is a message-oriented transport-layer
protocol. 97

DCE Direct Code Execution: refers to the ability of a simulator to execute directly within
itself in simulated time an program that was not originally developed to be run in a
simulator. 6, 7, 71, 72, 76, 86, 89, 93, 96–98, 122–124

DML Domain Modeling Language. 31

DNS The Domain Name System. 117

ELF Executable and Linkable Format: a common binary object file format used on many
UNIX systems. Defined originally in the System V ABI, later in the Tool Interface
Standard with processor-specific supplements. 8, 72, 78, 79, 82, 86, 92, 100

FreeBSD A UNIX Operating System which is a derivative of the BSD UNIX Operating
System. 73, 76

GloMoSim GloMoSim is a scalable simulation environment for wireless and wired net-
work systems. It was designed using the parallel discrete-event simulation capability
provided by Parsec. GloMoSim is now superseded by the commercial QualNet net-
work simulator. 17, 18, 31, 51–53, 66, 73

GNU GNU’s Not Unix: a recursive acronym that identifies the GNU project whose goal
is to build a UNIX-like Operating System. 8, 82, 87, 92

GTNetS The Georgia Tech Network Simulator is a full-featured network simulation en-
vironment that allows researchers in computer networks to study the behavior of
moderate to large scale networks, under a variety of conditions. 16, 17, 24, 27, 28,
31, 33, 36, 38, 47–50, 52, 53, 56, 64–66, 73

ICMP The Internet Control Message Protocol. 117

IP The Internet Protocol is the main inter-networking protocol deployed today that makes
it possible to interconnect packet-switched networks together. 2, 12, 31, 36, 38, 44,
47–49, 51, 53–55, 60, 62, 64, 65, 70–73, 75, 76, 85, 87, 93, 96, 97, 106, 111–113,
115–117, 122

ISP Internet Service Provider. 70

JNI Java Native Interface function calls allow Java code running within a Java Virtual
Machine to make direct calls to native C functions. 12, 74

JVM Java Virtual Machine. 33
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KLOC One thousand Lines of source Code. 52, 66, 86

Linux Linux is a UNIX-compatible Operating System. 7, 8, 36, 51, 70–72, 74, 76, 79, 82,
85, 87, 92–97, 99, 100, 108, 111, 115, 116, 122

LTR Load-Time Relocation: a load-time relocation is an entry in the relocation table
that is used by the dynamic loader to modify the image of the binary file once it is
mapped in memory. An executable can be said to be Load-Time Relocatable if its
relocation table is non-empty. 80, 81

LXC LinuX Containers is a virtualization technology integrated in recent versions of the
Linux kernel that makes it possible to create multiple separate instances of the same
host kernel within that host kernel. 72

MAC Medium Access Control: a sub-layer of the second layer of the seven-layer OSI
model. 4, 5, 36, 44, 53, 54

MPLS Multi Protocol Label Switching. 54

NetNs A Network Namespace is the network component of a LinuX Container: it is used
to virtualize access to the global variables of the Linux network stack so that multiple
network stacks can be instantiated within the same Linux host. 72, 99, 106, 109, 111,
114

NSC Network Simulation Craddle. 36

OMF cOntrol and Management Framework. 108, 109

OMNeT++ The Objective Modular Network Testbed ++ is a C++ discrete event simu-
lation environment. Its primary application area is the simulation of communication
networks, but because of its generic and flexible architecture, is successfully used in
other areas like the simulation of complex IT systems, queuing networks or hardware
architectures as well. Its name is based on the OMNeT simulator, written in Object
Pascal. 13, 16–19, 24, 27, 30, 31, 34, 35, 37, 38, 48–50, 52, 53, 56, 64–66

OS Operating System: the low-level software layer that is responsible for coordinating and
protecting access to the hardware and software resources available to user programs.
17, 71, 74, 76, 79, 80, 82, 87, 89, 96, 99, 111, 112

OSPF Open Shortest Path First is an IP interior routing protocol, that operates within
a single autonomous system (AS). 87

PC The Program Counter is the CPU register that contains the address of the currently-
executing instruction. 77, 81
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PHY Physical layer: the first and lowest layer in the seven-layer OSI model. 36

PIC Code is said to be Position Independent when its assembly instructions do not refer
directly to absolute memory locations whose address can change at runtime. In
short, the address at which Position Independent Code executes does not influence
its behavior. 8, 80, 81

POSIX Portable Operating System Interface [for Unix]: a family of IEEE standards that
specify (among others) the application programming of a UNIX OS. 87, 89–91

QoS Quality of Service. 62

RCU Read Copy Update is a synchronization algorithm used to control access to data
structures that are shared by multiple readers and writers. 95, 96

SCTP The Stream Control Transmission Protocol is a message-oriented transport-layer
protocol that ensures reliable in-sequence delivery of messages with congestion con-
trol. 97

SFA Slice Facility Architecture. 108

SMMP Shared Memory Multi Processor. 95, 123

SS Subscriber Station: a WIMAX term to designate potentially-mobile WIMAX nodes
which are connected with a Base Station. 109

SSF Scalable Simulation Framework. 31

Tcl Tool Command Language. 13, 31, 47

TCP The Transmission Control Protocol guarantees the reliable ordered delivery of a
stream of bytes over IP. 2, 3, 5, 12, 28, 34, 36, 45, 55, 59, 60, 62, 64, 70–73, 75, 87,
93, 96, 106, 115, 116

UDP User Datagram Protocol. 36, 38, 49, 51, 53, 64, 65, 84, 85, 97

UNIX UNIX is a multi-tasking multi-user Operating System. Nowadays, the term UNIX
often refers instead to a family of OSes and to the programming interface that they
offer. 70, 71, 76, 79, 82, 91

VDL The Virtualizing Dynamic Loader provides facilities to load the same binary more
than once in memory with different base addresses so that each version of the binary
loaded in memory accesses private copies of its global and static variables. 72, 86

WIMAX Worldwide Interoperability for Microwave Access. 109, 112, 114, 116
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Yans Yet Another Network Simulator was originally developed at the INRIA as a proto-
type to demonstrate the feasibility of a number of ideas such as the use of a 64-bit
integer for time, simulation packets that contain real network bytes, etc.. 7, 13, 28,
31, 36, 49–53, 56, 63–66, 73, 122

Zebra GNU Zebra is free software that manages TCP/IP based routing protocols such as
BGP-4 as well as RIPv1, RIPv2 and OSPFv2. 87
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